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Preface 

ELI is an array programming language system derived from APL but uses ACSII characters for easy 

communication.  ELI has almost all functionalities of ISO APL [1], i.e. all flat array operations, but it also 

has features not prescribed in [1] such as complex number, symbol, temporal data, list, dictionary, table, 

esql, control structures and scripting files.  We kept ELI simple since we want to make a clean and 

succinct way of doing array computing, unburdened by the legacy of FORTRAN, accessible to general 

public.  We make such a tool freely available to let more people appreciate the fact that simplicity of rules 

and notation in a programming language leads to greater programming productivity.  

 

The Primer is short; it is neither a tutorial nor a reference manual but does cover everything in the current 

ELI system.  A careful reading of this Primer should enable a new comer to get sufficiently familiar with 

ELI to start using it.  Thus, anyone with basic mathematics background can quickly pick up ELI to explore 

programming with arrays.   

 

Currently, ELI is available on Microsoft Windows platform as well as on Linux and Mac OS.  The 

directory structures are different in Windows and Linux/Mac OS.  In Windows, under the directory eli, 

there are two subdirectories bin (which contains the eli.exe and documents) and ws (which contains 

workspaces and script files).  In Linux/Mac OS these two are merged into one directory elix/elim.  

The user interface under Windows is through an ELI window while under Linux/Mac the interaction is 

command line based.     

   

The project started around 2000 [2] but was dormant for almost a decade; during 2009-2012 ELI has been 

revived with new features such as lists, complex numbers and temporal data, and made publicly available in 

2011 (current site: http://fastarray.appspot.com/).  In 2013, we added dictionaries and tables as well as esql.  

Both developers are based in US and we welcome suggestions and comments from users around the world 

to further improve ELI.   
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1. Arrays, Primitive Functions and Operators 

1.1 getting started 

 

You get an Eli executable, eli.exe, either through an e-mail or download from web.  You put eli.exe in your 

desktop or some directory in my document.  Click on eli.exe icon and you see 

 
ELI version 0.2 (C) Rapidsoft 

 CLEAR WS  

 

You type (the lines displayed with an indentation), and you see the system responses with a line: 

 

 !10 

1 2 3 4 5 6 7 8 9 10   

 100+!10 

101 102 103 104 105 106 107 108 109 110   

 v<-100+!10 

 v 

101 102 103 104 105 106 107 108 109 110   

 w<-2*v 

 w 

202 204 206 208 210 212 214 216 218 220  

 2*100+!10 

202 204 206 208 210 212 214 216 218 220  

 w+v 

303 306 309 312 315 318 321 324 327 330   

 v+w<-2*v<-100+!10 

303 306 309 312 315 318 321 324 327 330 

 

First, ! is a function which when applied to n generates a vector from 1 to n.  100 is then added to each 

elements in that vector.  This vector can then be assigned to a variable v , and after multiplied by 2 we store the 

value in another variable w , whose value can also be generated by the line below ( in that line + is done before 

* because + is to the right of *).  We see here two basic principles in Eli:  

 

     i) a line executes from right to left and all functions have equal precedence; 

     ii) for an arithmetic function f,  A f B  works if either one of the operand is a single or both are of equal 

shape (length). 

 

Rule i) also applies to defined functions, and ii) extends to scalar functions and arrays.  Eli provides 65+ 

primitive functions.  They are neither library functions nor are they represented by mnemonics.  Rather, they 

are denoted by special symbols consist of one or two ASCII characters.  For a two-character symbol, no blank 

is allowed in between; such a symbols either ends in a ‘.’ or the combination carries clear meaning.  A function 

symbol can denote either a monadic (i.e. has only a right operand) or a dyadic (has left and right operands) 

function depending on its context as shown in the following table. 
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Table of special symbols and the functions they represent 

 

monadic function symbol  name dyadic function 

  .  dot  

type  :  column map/enumeration 

unique  =  equal equal 

negate  -  minus subtract 

ravel  , comma catenate/laminate 

raze  ,. comma dot catenate on1staxis 

pi  @  at circle functions 

  @. del  

where  ? epsilon member 

roll  ?. random deal 

signum  *  star multiply 

exponential  *. power power 

reciprocal                                           % percent divide 

natural logarithm          %. log general logarithm 

absolute value  |   bar residue 

factorial  |. gamma binomial 

shape  #  rho reshape 

matrix inverse  #. domino matrix divide 

reverse  $  turn rotate 

reverse along 1st axis   $. turn dot rotate on 1st axis 

grade_up  < left less 

enclose  <. pack encode 

grade_down  >  right greater 

grouping  >. unpack decode 

conjugate  +  plus add 

format  +. format special format 

interval  !  iota index of 

execute  !. exclaimation drop 

count  ^  cup and 

first  ^. cup dot take 

  &  ampersand or 

transpose   &. flip general transpose  

  _ high_minus  

floor  _. lower minimum 

not  ~   tilde match 

ceiling  ~. upper maximum 

partition_count  || double bar partition 

  ~= not equal 

  >=  greater or equal 

  <=  Less or equal 
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reduce   / slash compress 

reduce along 1st axis  /. slashdot compress on1st axis 

scan  \  backslash expand 

scan along 1st axis  \. backslashdot   expand on 1st axis 

  <- assign 

  ->  branch 

  // comment  

  [] quad  

  [) bare_quad  

 

In the table, the names in the middle column are the names of the primitive symbol next to it.  Some are 

without names because they denote one function only, and the name of that function is the name of that symbol.  

For each row, the left column is the name of the monadic function which it represents while the name in the 

rightmost column is the names of the dyadic function which it represents.  We shall go through all of them later 

in this Primer.  Since the primitive functions are represented by symbols composed of special characters, there 

are no reserved words in Eli, other than 7 words for control structures which we’ll introduce in the next chapter. 

 

For a reader who is already familiar with APL, he can now go directly to sect. 1.11 on control structures and 

chapter 3 on system facilities other than note that there is a simple type symbol described in the next section.  

We remark here that currently Eli only covers real numbers, i.e. no complex numbers; and Eli has no nested 

arrays but it has lists to accommodate heterogeneous data (see sect. 1.11).    

  

// put everything to the right of it as a comment.  To log off from Eli, simply type 

 

      )off 

 

1.2 data types, variables, shape, reshape and count  

 

Eli deals with three types of data: numeric, character and symbol (we’ll add temporal data later).  A numeric 

data can be a boolean, an integer, a floating point number or a complex number.  A boolean data is either 0 or 1, 

which represent false and true respectively and can result from a comparison  

 

      2=2 3 

1 0 

 

or a logical operation on boolean data 

 

      1 1 0 1 0 0&0 1 0 0 1 0 

1 1 0 1 1 0 

 

      1 1 0 1 0 0^0 1 0 0 1 0 

0 1 0 0 0 0 

 

where & is the or function and ^ is the and function.  Boolean data can participate in all arithmetic operations 

as integers.  But there are primitive functions (we’ll see later) whose left operand must be boolean.   

 

Character data are entered by paired (single) quotes but displayed without quotes; and to put a ‘’’ into a 

character string, write ’’: 
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      A<-'BC' 

      ch<-'abcde''1234' 

      ch 

abcde'1234 

      A 

BC 

      A+1 

domain error 

 

We see that A is a variable of character type, and apply addition to it results in a domain error, i.e. it is out of the 

domain where + is defined.  If we do later, 

 

      1+A<-10 

11 

 

Now A takes a numeric value 10 and addition is ok.  Hence, in Eli variables can be assigned values on the fly 

without first declaring their type (or dimensions), and can even change its type (even though it may not be a 

good idea to do so).  But a variable must have been assigned value before you can use it: 

 

      n+1 

value error 

 

A data of symbol type is entered with a back-tick ` followed by a character string (possibly empty) as 

 

      a<-`abc 

      a 

`abc 

  

A character string that is allowed to form a symbol should not have blanks; and not all symbols are name-like as 

`+ and `>= are also legitimate symbols.   

 

A name in an Eli workspace denotes either a variable or a user defined functions.  A name must start with a 

letter followed by alphanumeric characters plus the ‘_’ character (but not as an ending character).  There are 

also special names, i.e. names prefixed by a ‘_’, reserved for system variables and system functions.  As in 

Unix, names are case-sensitive.  Clearly, there must be a blank between data, and between data and user 

function, i.e. numbers, character strings and names; but a blank is not required between a data item and a special 

symbol denoting a primitive function, or between symbols.  So a-3 and a - 3 are the same.   

 

To see what variables or defined functions are in a workspace, you type the system commands 

 

      )vars 

      )fns 

 

In a clear workspace, there is none.  Numbers are written in decimal form 

 

      12 1.2 0.5 1.0 

12 1.2 0.5 1 

 

A floating point number involves a ‘.’ but it can’t start or end with a ‘.’ 

 

      .5 

syntax error 
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Negative numbers are prefixed with ‘_’.  Note that the monadic function ‘-‘ applies to each number to the right 

of it, and ‘_’ is not a primitive function  

  
      -1 2.5 3   (same as 0-1 2.5 3) 

_1 _2.5 _3 

      

Note that ‘_’ is treated similar to a decimal point in a number, so it must be immediately followed by a digit (i.e. 

no blank is allowed between them).  For scaling, both ‘e’ and ‘E’ are acceptable: 

 

      1.2e2 

120 

      1.2E2 

120 

 

A complex number is of the form RjI, where R is the real part and I is the imaginary part, each written as an 

integer or a floating point number and there should be no space before or after j.  For example the square root 

of _1 is 

 

      _1*.0.5 

0j1 

      2j5+3j2.5 

5j7.5 

      2j5*3j2.5 

_6.5j20 

 

Our discussion so far is on how to enter literal data, or assign a literal data to a variable.  We call all literal data, 

variables and values resulted from evaluation of expressions simply data.  A data in Eli is either a scalar, an 

array or a list.  A scalar is a single number, a single character, a single symbol, a single temporal data, or a 

variable holding such a value.  A one dimensional array is called a vector, a two dimensional array is called a 

matrix, and a scalar can be regarded as a 0-dimensional array.  There are higher dimensional arrays, and the 

dimension of an array is called its’ rank. A vector is a rank 1 array, and a matrix is a rank 2 array and so on.  

The length of a vector is the number of elements in that vector, and a length 0 vector is called an empty vector. 

Surprisingly, there are empty arrays other than empty vector, i.e. one of its dimensions is 0.  For any data, we 

can apply the shape function # to get its’ shape, i.e. its’ dimensions 

  

      sa<-#a<-1 

      sa 

             (sa, the shape of a, is an empty vector) 

      #sa 

0             (its length is 0) 

      b<-1 3 8 9 12 

      #b 

5         

      #'K' 

               (again an empty vector) 

      ##'K' 

0 

      ##b      (b is of rank 1, i.e. a vector) 

1 

 

We can also create empty vector in two ways: 
 

      #!0 

0 

      #'' 

0 
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Up to this point we may just wonder: how do we input a matrix, and other higher dimensional arrays, into Eli 

console?  First, let us try to input a 2 by 3 matrix: 

 

      a<-9 2 3 

      4 5 6 

4 5 6  

      a 

9 2 3 

 

We see that multi-line doesn’t work as expected.  To this end we introduce the dyadic form of #, the reshape 

function S#A, where S must be a non-negative integer or vector while A can be any data: 

 

      a<-2 3#9 2 3 4 5 6 

      a 

9 2 3 

4 5 6 

      #a 

2 3 

 

What the dyadic # (called rho) does is to put the right side operand into an array of shape specified by the left 

operand.  The left operand must be a vector whose elements are all non-negative integers; but that vector can 

have just 1 element or more that 2 elements. 

 

      7#'wy' 

wywywyw 

      a3<-2 3 4#!21 

      a3 

 1  2  3  4 

 5  6  7  8 

 9 10 11 12 

 

13 14 15 16 

17 18 19 20 

21  1  2  3  

      #a3 

2 3 4 

 

We see that in case the right operand does not have enough elements to fill up the required result array or vector, 

it would reuse its elements in turn.  The shape of the result from a reshape always equals to the left operand of 

the reshape.  Moreover, we can create empty vector and empty matrix by a reshape 

 

      #empv<-0#a 

0 

      #empm<-0 10#'A' 

0 10 

 

An empty vector usually is used to initialize a list, and an empty matrix is typically used to initialize a table of 

certain length (say 10 as in the above case). 

 

There is a monadic function ‘,’ called ravel acting like an inverse of reshape, which turns any data into a vector 

whose length is the product of shape vector (the dimensions) of the operand array 

 

      ,a 

9 2 3 4 5 6 

      ,a3 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 
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      #,a3 

24 

      #av<-,a0<-8 

1 

 

We see that the ravel of a scalar turns it into a one-element vector, i.e. a vector of length 1 of the same value.  

Often they behave the same in computations, but there could be subtle differences as one is of rank 0 while the 

other is of rank 1.   

 

The dyadic function denoted by ‘,’ is called catenate which glues two pieces of data together: for A and B both 

to be either scalar or vector, A,B just attach B to A.   

 

      0,!10 

0 1 2 3 4 5 6 7 8 9 10 

       (!10),_1 

1 2 3 4 5 6 7 8 9 10 _1 

      'WATCH OUT','!' 

WATCH OUT! 

      'WATCH OUT',' GUYS!' 

WATCH OUT GUYS! 

      100 200,2 3 5 

100 200 2 3 5 

 

We note that the difference between a character string (a vector) and a symbol (a scalar) here: 

  
      #S<-'abc' 

3 

      #`abc 

                          (again an empty vector)  

      #,`abc 

1  

      #s3<-`abc `ddl `comp 

3 

      2 2#s3 

`abc  ̀ ddl 

`comp `abc 

 

For a vector v, the shape of v, #v, gives the number of elements in v; for a general array a, multiplying the 

elements in #a, i.e. the product of dimensions of a (*/#a), gives the number of elements in a. There is a 

monadic primitive function count ^, for which ^w gives the number of elements in w, and for a scalar w, ^w is 1 

(this saves us the need to ravel a scalar in cases for counting purpose).  So we have, 

 

      ̂ S 

3 

      ̂ `abc 

1 

      ̂ s3 

4 

      ̂ a3 

24 

 

We note that when entering a numeric vector a blank space is obviously needed between two neighboring 

numbers, but this is not needed in case of entering a vector of symbols: 

 

      syms<-`a`b`c 

      syms 

`a `b `c 
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1.3 indexing and indexed assignment 

 

Before we discuss indexing, let us revisit the monadic function !n which gives a vector 1…n.  There is actually 

a system variable []IO called index origin, which by default is 1, but can be changed to 0 in a workspace. 

 

CLEAR WS 

      []IO 

1 

      !12 

1 2 3 4 5 6 7 8 9 10 11 12 

      []IO<-0 

0 

      !12 

0 1 2 3 4 5 6 7 8 9 10 11 

 

Indexing a vector or an array depends on []IO.  For []IO=0, it operates like in C.  For w holding 

3 1 _7 9 11 6 0 _2 

  

      w[0 4 7] 

3 11 _2 

      w[8] 

index error 

      []IO<-1 

1 

      w[8] 

_2 

 

Eli signals an index error if any one of the indices used is out of bound and that depends on []IO, i.e. each 

index must be an integer between []IO and (#v)+[]IO-1 for any vector v. What inside [..] is called an index 

expression.  Elements in an index expression need not to be distinct nor necessary to be a scalar or vector, it 

can be an array as long as each of its elements is within the bound specified above: 

 

      w[3#4 7] 

9 0 9 

      3#4 7 

4 7 4 

      w[2 3#4 7] 

9 0 9 

0 9 0 

 

The shape of the result from an indexing is the shape of the index expression, i.e.                              

                               
#v[I] �� #I 

   

For matrices and high dimensional arrays, we can index into individual elements of an array, or we can get some 

of its sub-array by indexing certain slices. 

 

      x 

ABCD 

EFGH 

IJKL 

      x[2;4] 

H 

      x[2 3;4] 

HL 

      x[2 3;1 4] 

EH 

IL 
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      x[;4] 

DHL 

      x[;,4]  

D 

H 

L 

      x[1 2;] 

ABCD 

EFGH 

 

where an empty expression before or after a ‘;’ indicates that all elements in the corresponding axis are to be 

taken.  We also notice the difference between indexing by a scalar 4 and by a one element vector ,4.  The first 

results in a vector while the second results in a 3 by 1 matrix.  In general, if A is an k-dimensional array, then 

 
                              I  ��  I1;I2;…;Ik 

 

is a valid index expression for A provided each Ij is either empty or is an integer expression whose value (or 

value of its elements in case of array) lies within !(#A)[j]; each Ij is called a component of the index 

expression I, and the shape of               

 
         A[I] 
 

is the Cartesian product of shapes of Ij’s.  For example, 

 

      A<-2 3 4#!24 

      A 

 1  2  3  4 

 5  6  7  8 

 9 10 11 12 

 

13 14 15 16 

17 18 19 20 

21 22 23 24 

      A[1;2 3;1 2 4] 

5  6  8 

9 10 12 

      A[;1 3 2;2 4] 

 2  4 

10 12 

 6  8 

 

14 16 

22 24 

18 20 

 

If one of the elements in Ij is not in !(#A)[j], the system responses with a index error message.  If the 

number of ‘;’ is not equal to(##A)-1 then we have a rank error  

 

      A[2;3 4] 

rank error 

 

We have already seen simple assignment 

 
                             anv<-expression 
 

where anv is a variable, which may or may not need to have appeared before, and expression is a line of code 

to the right of <-.  Eli evaluate this line from right to left as we stated in the getting started sect. and put the 
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resulting value into anv; and that resulting value is also the result of the assignment.  Hence, we can assign 

some (initial) value to a group of variables, A, B, C, … all at once 

 
      A<-B<-C<-!0 

 

and remember the equal precedence rule, which can be overwritten by parentheses 

  
      3*2+1 

9 

      (3*2)+1 

7 

 

To set up a variable E with the same number of 0s as the length of another vector V, 

 

      E<-#V#0 

 

would have E holding the value of V if V is an integer vector, but the following will do the intended 

  
      E<-(#V)#0 

  

An indexed assignment  

 

      A[I]<-B  

 

changes the values of certain elements of an existing array A, specified by the index expression I, to a new set of 

values denoted by B. For this to be a valid assignment, first I must be a valid index expression with respect to A 

as explained earlier in this section, and second, the shape of B must be the same as that of I or B is a scalar.  

The result of the indexed assignment is the replacement of the values of elements in A specified by I with the 

corresponding elements from B or the single scalar value B.  In case there are duplicates in I, the later ones in B 

overwrite earlier ones.  

 

      av<-!12 

      av[2 3]<-12 13 

12 13 

      av[2*!6]<-0 

0 

      av 

1 0 13 0 5 0 7 0 9 0 11 0 

      a3<-2 3 4#!21 

      a3[1;2 3;3 4]<-2 2#!4 

1 2 

3 4 

 

      a3 

 1  2  3  4 

 5  6  1  2 

 9 10  3  4 

 

13 14 15 16 

17 18 19 20 

21  1  2  3 

 

      a3[2;;1 3 4]<-1 

1 

      a3 

1  2 3 4 

5  6 1 2 

9 10 3 4 
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1 14 1 1 

1 18 1 1 

1  1 1 1      

 

Indexed assignment is the only kind of assignment with expressions other than a variable name allowed on the 

left side of ‘<-’ in Eli.      
  

1.4 arithmetic and circle functions 

 

A monadic primitive function f is called a scalar function if f(s) is again a scalar for a scalar s, and that f(A) has 

the same shape as that of A for an array A plus that any element (f(A))ij of the result equals to f(Aij) (so ! and # 

are not monadic scalar functions).  A dyadic primitive function f is called a scalar function if z f s is again a 

scalar for scalars z, s; otherwise for B f A , A and B must be compatible, i.e. either one of them is a scalar or they 

must be of the same shape S, then B f A is of shape S plus that any result element (B f A)ij = Bij f Aij, where 

either Bij or Aij could be the reshape of a scalar. 

 

Hence, the application of a scalar function to an array, or arrays, is a natural extension of its application to each 

(pair of) element(s) of the array(s).  Thus, a scalar function preserves the shape of its operand(s). All arithmetic, 

logical and relational functions are scalar functions. Other functions are called mixed functions. Arithmetic 

functions operate on numbers while logical functions operate on boolean data.  We have see the addition +, 

subtraction - and multiplication * functions.  The monadic form of * is the signum function:  

 

*0 is 0, *p is 1 for any number p>0, and *n is _1 for any number n<0.    

 

Suppose V and P are the volumes and prices of a stock trades in the first minute of market opening, P0 (=20) is 

the closing price of that stock in the previous day.   To mark the volumes of up-trades positive and 

down-trades negative: 

      

      V 

86 25 55 48 78 95 36 36 14 65  

      P 

17.3 22.3 24.3 17.5 21.4 18.4 17.2 15 20.8 21.8 

      *P-P0<-20 

_1 1 1 _1 1 _1 _1 _1 1 1 

      V**P-P0 

_86 25 55 _48 78 _95 _36 _36 14 65 

 

The power function L*.R raises the base to the Rth power of L 

 

      2 _3 10 0.5 25 *. 2 

4 9 100 0.25 625 

      10 *. _1 0 1 2 3 

0.1 1 10 100 1000 

      2*.!10 

2 4 8 16 32 64 128 256 512 1024 

      4 9 100 0.25 625 *.0.5 

2 3 10 0.5 25  

 

We see that for a negative number –p on the right n*.-p is the inverse of (n*.p); and that v*.0.5 is taking the 

square root of v. 
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The monadic form of *. is the mathematical exponential function. 

 

      e<-*.1 

      e 

2.7182818 

      *. _1 0 1 2 3 

0.36787944 1 2.7182818 7.3890561 20.085537 

      e*. _1 0 1 2 3 

0.36787944 1 2.7182818 7.3890561 20.085537  

 

We see that e above is the famous transcendental number e, and that *.v is just a convenient way to write e*.v 

for any numerical (scalar or array) v.  

 

The divide function is denoted by % 

 

      (!6)%2  

0.5 1 1.5 2 2.5 3 

      24%!6 

24 12 8 6 4.8 4 

 

The monadic form of % is the reciprocal function; %v is simply 1%v. 

 

      %!6 

1 0.5 0.33333333 0.25 0.2 0.16666667 

 

Now to take cubic root of numbers or various roots of a number, we do 

 

      1 2 8 1000 81 125 *.%3 

1 1.259921 2 10 4.3267487 5 

      1024*.%1 2 3 5 10 

1024 32 10.079368 4 2 

 

The next pair of arithmetic functions is the log functions %. : for dyadic B%.L, it is the B based log of L, and the 

monadic %.L is the natural logarithm function, i.e. the same as the dyadic one with B fixed to be =e.  So, %. is 

the inverse function of *. just like % is the inverse function of * .   

 

      10%. 1 10 100 1000 10000 

0 1 2 2 3 4 

      10%. 1 10 100 1000 10000 100000 

0 1 2 3 4 5 

      2%. 0.5 1 2 4 8 16 

_1 0 1 2 3 4 

      2 3 10%. 4 9 100 

2 2 2 

      e<-*.1 

      e 

2.718282 

      %.1 10 100 1000 10000 100000  

0 2.302585 4.60517 6.907755 9.21034 11.512925 

      e%.1 10 100 1000 10000 100000  

0 2.302585 4.60517 6.907755 9.21034 11.512925 

 

The monadic | is the absolute value function, i.e. |p equal to p if p>0 or =0, and |p equal to –p if p<0. 

 

      | _1 2 _3.2 5 0 _10 

1 2 3.2 5 0 10 

 

The dyadic function A|B is the residue function, i.e. its value is the remainder of B after divided by A. 
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      2|!12 

1 0 1 0 1 0 1 0 1 0 1 0 

      2 3 4.5|9  

1 0 0 

      3.2|3 6.4 7 

3 0 0.6  

 

The monadic form of _. is the floor function, i.e. the value of _. v is the largest integer i which is less than or 

equal to v. 

 

      _. 9.2 3 10.5 _1.5 _100 

9 3 10 _2 _100  

 

The dyadic form of _. is the minimum function, i.e. the value of a_. b is the smaller of a and b.   

 

      3 5 7 9.4_.2 6 8 20 

2 5 7 9.4 

 

The functions denoted by ~. are the mirror images of that for _. .  The monadic form of ~. is the ceiling 

function, i.e. the value of ~.v is the smallest integer i which is greater than or equal to v. 

 

      ~.9.2 3 10.5 _1.5 _100 

10 3 11 _1 _100 

 

The dyadic form of ~. is the maximum function, i.e. the value of a~. b is the greater of a and b. 

 

      3 5 7 9.4~.2 6 8 20 

3 6 8 20 

 

The last of arithmetic functions are the circle functions @.  The monadic @n is just pi times n. 

 

      @ 1 2 3 

3.141593 6.283185 9.424778 

 

The dyadic L@R actually represents a group of functions (mostly trigonometric with several others), where L can 

take any integer value from _12 to 11; we have 

 

                    Table of Circle Functions in ELI 

 

L L @ R L L @ R 

  0 (1 – R*.2)*.0.5 

_1 arcsin R 1 sine R 

_2 arccos R 2 cosine R 

_3 arctan R 3 tangent R 

_4 ( _1 + R*.2 )*.0.5 4 ( 1 + R*.2)*.0.5 

_5 arcsinh R 5 sinh R 

_6 arccosh R 6 cosh R 

_7 arctanh R 7 tanh R 

_8 -(8 @ R) 8 -( _1 – R*.2)*0.5 for R>=0 

( _1 – R*.2)*0.5 for R<0    

_9 R 9 real R 
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_10 +R 10 |R 

_11 0j1*R 11 imaginary R 

_12 *.0j1*R   

 

For example, 

 

      4@3 0.5 1 

3.162278 1.118034 1.414214 

 

Finally, we remark here that we only used scalar and vector data in our examples in this section as well as in the 

next section.  This is only for convenience and succinctness of presentation.  Since they are all scalar 

functions, they apply to matrices and arrays of higher dimension in a similar manner.   

 

So far our examples of arithmetic functions have only touched real numbers, but we already introduced complex 

numbers in sect. 1.2, i.e. 

 

      _1*.0.5 

0j1  

 

and dyadic +, -, *, %, *. , %. as well as monadic -, %, *. just follow the usual rule of complex numbers 

mathematical operations. We also have specified how some circle functions apply to complex numbers.   We 

now discuss how monadic +, the conjugate function, and monadic *, the signum function apply to complex 

numbers.  For a real number a, +a is just a; for a complex number +ajb is aj_b 

 

      +2j3 

2j_3  

 

For a complex number c , *c is an unit length complex number in the same direction as that of c:  

 

      *3j4 0j1 0j_1 

0.6j0.8 0j1 0j_1 

 

We also have the examples of monadic scalar functions applied to complex numbers 

 

      %3j4 

0.12j0.16 

      |3j4 

5 

      _.2.1j3.2 _1.2j2.5         //floor 

2j3 _1j2 

      ~.2.1j3.2 _1.2j2.5         //ceiling 

2j4 _1j3 

      @1 

3.141592654 

      *.0j1*@1                     // 1−=
πi

e      

_1 

     %._1 
0j3.141592654 

  

1.5 relational and logical functions 

 

Relational functions are also scalar functions; they are all dyadic, and all yield boolean results.  They are the 

six primitive relational functions, equal, not equal, greater, greater or equal, less, less or equal :  
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                     =   ~=   >   >=   <   <= 
 

(note that for a legitimate primitive symbol in Eli, no blank is allowed in a 2-character symbol such as <=).  

The first two functions test for equality, and for which A fn B is valid as long as A and B are shape compatible.  

For the rest 4 functions, left and right operands must be either both numeric or characters.  A mixed order 

comparison will result in a domain error.  The order of numeric data is their mathematical order.  The order of 

character data is their ascii-character order.  

 

      'A'=1 

0 

      'A'>’1’ 

1 

      'ABb'<'B' 

1 0 0 

      'ABb'='B' 

0 1 0 

      'ABb'>='B' 

0 1 1 

      14 76 46 54 22 5 68 68 94 39 < 50 

1 0 1 0 1 1 0 0 0 1 

      52 84 4 6 53 68 1 39 7 42 > 14 76 46 54 22 5 68 68 94 39 

1 1 0 0 1 1 0 0 0 1   

      ̀ abc='abc'    (since `abc is a symbol while ‘abc’ is a character vector of length 3) 

0 0 0 

 

For two symbols they can only be compared for equal or not equal. 

  

There are three logical functions ~ (not), ^ (and), & (or) in Eli which operate on boolean data only:  

 

      ~ 1 0 1 0 1 1 0 0 0 1 

0 1 0 1 0 0 1 1 1 0 

      1 0 1 0 1 1 0 0 0 1 ^ 1 1 0 0 1 1 0 0 1 1 

1 0 0 0 1 1 0 0 0 1 

      1 0 1 0 1 1 0 0 0 1 & 1 1 0 0 1 1 0 0 1 1 

1 1 1 0 1 1 0 0 1 1 

 

1.6 operators and their derived functions 

 

Eli provides 4 operators to apply to dyadic scalar functions to produce derived functions f; they are reduce / , 

scan \, outer product .: and inner product : .  For / and \ the derived function, f/ or f\, is monadic.  When f is 

+ , +/ is the summation function, and if f is ~. , ~./ is the total maximum function, _./ the total minimum function, 

*/ the product function:  

 

      +/!100 

5050 

      +/14 76 46 54 22 5 68 39 

324 

      ~./14 76 46 54 22 5 68 39 

76 

      _./14 76 46 54 22 5 68 39 

5 

      */14 76 46 54 22 5 

290727360 

 

In general, the result of f/V is always a scalar for a vector V; i) for s a scalar or one element vector, the value f/s 

is s or a scalar holding value of s; ii) if V is a vector of length n, then 
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                    f/V  ��  V[1] f V[2]….V[n-1] f V[n]  

 

i.e. the value of f/V is computed by inserting f between all elements of V.  

 

      -/3 4 5 

4 

      3-4-5       (remember to evaluate from right to left)  

4 

 

A special note: to compare a variable b with the – reduction or negation of a, a blank is required 

 

      a<-!10 

      b<--/a 

      b 

_5 

      b<-/a 

left argument missing 

      b< -a 

1 1 1 1 0 0 0 0 0 0 

      b< -/a 

0 

 

(iii) what happens if V is empty?  The result then is the identity element w of the function f, that is the value 

which is neutral to the function f in the sense that a f w is a for all a:    

 

      +/!0 

0 

      */!0 

1 

      +./0 

0 

      &/!0 

0 

      ̂ /!0 

1         

 

(iv) for A being a matrix or higher dimensional array, f/A is evaluated by applying f/ to the vector along the 

last axis of A to form a resulting vector or array 

 

      m 

 1  2  3  4 

 5  6  7  8 

 9 10 11 12 

 

13 14 15 16 

17 18 19 20 

21 22 23 24 

      +/m 

10 26 42 

58 74 90 

      +/m[1;;] 

10 26 42  

 

For a commutative function f, i.e. a f b = b f a, to get the total f, you can apply ‘,’ to m then do reduce.                   

 

      +/,m 

300 

 

or for a matrix operand, you can apply f/ twice 
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      +/+/m[1;;] 

78  

 

What if we want to reduce along the first axis, i.e. columns in case of a matrix?  /. would do just that 

 

      +/.m[1;;] 

15 18 21 24 

 +/.m 

14 16 18 20 

22 24 26 28 

30 32 34 36 

 

The scan operator \ also takes a left argument f, which is a dyadic scalar function, to produce a monadic derived 

function f\.  When f is +, +\ is the partial sum function, and if f is ~. , ~.\ is the cumulative maximum function, 

_.\ the cumulative minimum function, *\ the partial product function:  

 

      +\14 76 46 54 22 5 68 39 

14 90 136 190 212 217 285 324 

      ~.\14 76 46 54 22 5 68 39 

14 76 76 76 76 76 76 76 

      _.\14 76 46 54 22 5 68 39 

14 14 14 14 14 5 5 5 

      *\14 76 46 54 22 5  

14 1064 48944 2642976 58145472 290727360 

 

&\ turns bits in a boolean bits vector into 1’s once it sees a 1, and ^\ turns bits into 0 once it sees a 0. 

We’ll see later that combine with other primitives, these two derived functions are very useful. 

 

      &\0 0 0 1 0 1 1 0 0 0 1 

0 0 0 1 1 1 1 1 1 1 1 

      ̂ \1 1 1 1 0 1 1 0 0 0 1 

1 1 1 1 0 0 0 0 0 0 0 

 

For the cases (i) and (iii) described above, the result of f\ is the same as that of f/.  For a vector V 

 
                      (f\V)[i] �� (f/V[!i]) 

 

assuming []IO=1, i.e. the value of f\V at position i is the reduce of f on V[1…i].  This rule extends to 

matrices and other arrays.  Hence, scan preserves shape, i.e. #f\A equals #A.  For the m above, 

 

      +\m 

 1  3  6 10 

 5 11 18 26 

 9 19 30 42 

 

13 27 42 58 

17 35 54 74 

21 43 66 90 

      +\m[1;;] 

1  3  6 10 

5 11 18 26 

9 19 30 42 

      +\.m 

 1  2  3  4 

 5  6  7  8 

 9 10 11 12 

 

14 16 18 20 
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22 24 26 28 

30 32 34 36 

      +\.m[1;;] 

 1  2  3  4 

 6  8 10 12 

15 18 21 24  

 

where the scan along 1
st
 axis operator \. is similarly defined as that of /. reduce along first axis.  

 

Let C be a coefficient vector of a polynomial, and set []IO=0, i.e. C represent the polynomial in x of degree n 

 
      C[n]x

n
 +…+C[2]x

2 
+C[1]x+C[0] 

 

To evaluate this polynomial at a point B we do 

 
      +/C * 1,*\(_1+#C)#B  
We note that the expression to the right of scan is a vector of B’s of length n=(#C)-1, and the scan puts that into 

a vector of successive powers of B. 

 

The other two operators, outer product and inner product, take one (f) and two (f,g) dyadic scalar function(s) 

respectively to produce dyadic derived functions.  The outer product operator is denoted by .: and applies to a 

function f on its right .:f ; for two vectors A and B,  

 
                 (A.:f B)[i;j] �� A[i] f B[j]  
 
      A<-15 18 21 24 

      B<-100 200 2 3 5 

      A.:*B 

1500 3000 30 45  75 

1800 3600 36 54  90 

2100 4200 42 63 105 

2400 4800 48 72 120 

      A.:%3 5 2  

5 3  7 

6 3  9 

7 4 10 

8 4 12 

      (!3).:<!5 

0 1 1 1 1 

0 0 1 1 1 

0 0 0 1 1  
To see how 1000 dollars will grow under 3%, 5% and 8% of annual interests in 10 years, we do 

 

      1000 *1.03 1.05 1.08 .:*. !10 

1030  1060.9 1092.727 1125.5088 1159.2741 1194.0523 1229.8739 1266.7701 1304.7732 1343.9164 

1050  1102.5 1157.625 1215.5063 1276.2816 1340.0956 1407.1004 1477.4554 1551.3282 1628.8946 

1080  1166.4 1259.712 1360.489   1469.3281 1586.8743 1713.8243 1850.9302 1999.0046 2158.925 

 

In general, then #(A.:f B) �� (#A),#B as we see for the m above 

 

      m.:+100 200 300 400 500 

101 201 301 401 501 

102 202 302 402 502 

103 203 303 403 503 

104 204 304 404 504 
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105 205 305 405 505 

106 206 306 406 506 

107 207 307 407 507 

108 208 308 408 508 

 

109 209 309 409 509 

110 210 310 410 510 

111 211 311 411 511 

112 212 312 412 512 

 

113 213 313 413 513 

114 214 314 414 514 

115 215 315 415 515 

116 216 316 416 516 

 

117 217 317 417 517 

118 218 318 418 518 

119 219 319 419 519 

120 220 320 420 520 

 

121 221 321 421 521 

122 222 322 422 522 

123 223 323 423 523 

124 224 324 424 524    

      cv.:*cv<-2j3 0j2 _2.3     //outer product of * 

  _5j12   _6j4    _4.6j_6.9 

  _6j4    _4         0j_4.6 

_4.6j_6.9  0j_4.6 5.29 

      +cv.:*cv<-2j3 0j2 _2.3    //conjugate of outer product 

  _5j_12 _6j_4  _4.6j6.9 

  _6j_4  _4        0j4.6 

_4.6j6.9  0j4.6 5.29      

  

The inner product operator : takes two dyadic scalar functions f and g to produce a dyadic derived function f:g; 

(we remind APL people f.g is not inner product in Eli) for vectors V and W, V f:g W is f/VgW.  For example, 

 

      V<-2 5 1 4 

      W<-1 9 6 7 

      V~.:+W 

14 

      V+:~.W 

24 

      m1<-3 4#!12 

      b2<-2 3#!6 

      m1 

1  2  3  4 

5  6  7  8 

9 10 11 12 

      b2 

1 2 3 

4 5 6 

      b2+.*m1 

length error        (oops, inner product is +:* not +.*) 

      b2+:*m1 

38 44  50  56 

83 98 113 128 

 

So we see that +:* is our usual matrix multiplication, but inner product is more useful than that.  Let STS be a 

slice of data from students’ record representing their home states, ST6 represents six Northeast states, and 

&.ST6 is the transpose of the character matrix ST6. 
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      STS 

NY 

NJ 

CT 

NY 

MA 

PA 

NY 

CT 

MA 

RI 

PA 

NJ 

NY 

NJ 

CT 

      ST6 

CT 

MA 

NJ 

NY 

PA 

RI 

      &.ST6 

CMNNPR 

TAJYAI 

      STS^:=&.ST6 

0 0 0 1 0 0 

0 0 1 0 0 0 

1 0 0 0 0 0 

0 0 0 1 0 0 

0 1 0 0 0 0 

0 0 0 0 1 0 

0 0 0 1 0 0 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 0 0 0 1 

0 0 0 0 1 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 1 0 0 0 

1 0 0 0 0 0 

      +/.STS^.:=&.ST6 

3 2 3 4 2 1 

 

The result of inner product and with equal is a 15 by 6 matrix of 0 and 1’s; each row has one 1 points to a 

matched state and +/. gives the number of students from each of the six states. 

 

There is a fifth operator, the axis operator, [x], applies to some structural primitive functions, which we will 

explain in section 1.8.  

 

1.7 member of, index of, where, compress, expand and unique 

 

Two very useful mixed functions in Eli are member of (A?S) and index of (V!B).  For the first function, both 

arguments A and S can be any scalar or array; for each elements a in A it tests whether a is a member of the set 

consisting of elements in S, the result in that corresponding position is 1 if it is, and 0 if not.  Hence #A?S �� 

#A.  In particular, if A is empty then the result is empty, and if S is empty then the result is (#A)#0.  For 

example, 
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      1 2 3?!0 

0 0 0 

      (!0)?2 3 

                         (empty vector) 

      #(!0)?2 3 

0 

      5?!6 

1   

      a 

ABCD 

EFGH 

IJKL 

      s<-'A BOOK' 

      a?s 

1 1 0 0 

0 0 0 0 

0 0 1 0  

 

For the index of function v!c the left argument v must be a vector while the right argument c can any scalar or 

array.  For c a scalar, v!c gives the index of the first element in v which equals to c if c?v is 1, or 1 plus the 

index of the last element of v if c?v is 0.  This function obviously depends on []IO which we assume to be 1 

here.  For example 

 

      2 4 6 7 8!6 

3                               (if []IO=0, it would be 2) 

      2 3 6 7 8!5 

6                               (if []IO=0, it would be 5)  

 

For general B, #V!B �� #B and each element of V!B gives the index of the corresponding element of B in V as 

in the scalar case.  For example 

 

      s!a 

1 3 7 7 

7 7 7 7 

7 7 6 7 

 

The member of function ? tells us whether a particular element (of an array) is in the set of another array.  The 

index of function ! tells us more, i.e. the position, in case the array we check against is a vector.  So, index of 

function gives a kind of associative search capability in Eli.  Please note that the roles played by the left and 

the right arguments in index of (!) is the reverse of that in member of (?).  

 

The monadic form of (?) is the where function: for a boolean (vector) operand B, ?B gives the indices of 

elements in B which are 1. 

 

      ?1 0 0 1 1 0 1 0 0 0 1 0 

1 4 5 7 11 

 

This function clearly depends on []IO as the above is for []IO=1, and for[]IO=0 we would have 

 

0 3 4 6 10       

 

The compress (B/A) function let us select elements of A according to the left argument B which must be a 

boolean vector while A can be any array.  First, suppose A is a vector V; then we must have 

 
                               (#B) = #V 
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the function then selects those elements of V whose corresponding element in B is 1 to form the result vector 

 

      B<-0=2|V<-!10 

      V 

1 2 3 4 5 6 7 8 9 10 

      B 

0 1 0 1 0 1 0 1 0 1 

      B/V 

2 4 6 8 10 

     (~B)/V 

1 3 5 7 9  

      X 

14 76 46 54 22 5 68 39 

      +/(X>50)/X 

198 

 

Hence, one typically uses a B to represent some proposition P about elements of V to get those and only those 

by compress; in the above P is the proposition that {can be evenly divided by 2}, and the result of B/V is the set 

of even numbers in V.  And for a W, 

 
          (V?W)/V 
 

gives the intersection of V and W.  Now V may have duplicate elements, but 

 
          ((V!V)=!#V)/V 
 

yields the unique elements of V.  This is because by the definition of dyadic !, only when an element V[i] 

appears for the first time, the value of index of at that position would equal to i.  V can be characters or floating 

point numbers.  Indeed, we have a monadic primitive function unique = to do just that (note that the right 

operand must be a vector): 

 

      = 14 76 14 46 54 22 5 22 68 5 39 

14 76 46 54 22 5 68 39 

     

For an array A, B/A selects elements of A along the last axis 

 

      a 

ABCD 

EFGH 

IJKL 

      1 0 1 0/a 

AC 

EG 

IK 

  

To compress along the first axis, we have the function /. 

 

      1 0 1/.a 

ABCD 

IJKL 

 

The function which plays the reversal role to compress is expand, B\A, with B also required to be a boolean 

vector.  For a vector V as A, we must have (+/B) = #V, expand then distributes elements of V to positions 

corresponding to a 1 in B and fills holes by a typical element of V, which is 0 if V is numeric and a blank if V is a 

character string.  
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      B 

0 1 0 1 0 1 0 1 0 1 

      W<-2 4 6 8 10 

      B\W 

0 2 0 4 0 6 0 8 0 10 

      B<-1 1 0 1 1 0 1 1 1 1 1 1 

      W<-'itissimple' 

      B\W 

it is simple 

 

B\A extends to array A in a similar manner as that for B/A, and \. is expand along the first axis.  

 

1.8 structural transformations of arrays  

 

In addition to s#v, there are 9 more primitive functions that transform their array arguments structurally but do 

not change or re-arrange the values of the array elements.  They are take (I^.A), drop (I!.A), first (^.A), 

rotate (I$A), reverse ($A), transpose (&.A), ravel(,A), catenate (A,B) and laminate (A,[x]B).  

 

When the right argument of a take is a vector V, the left argument I must be an integer.  For example 

 

      3^.1 2 3 4 5 6 7 

1 2 3  

      _3^.1 2 3 4 5 6 7 

5 6 7 

      9^.1 2 3 4 5 6 7 

1 2 3 4 5 6 7 0 0 

      5^.`abc `ddl `comp 

`abc `ddl `comp ` ` 

 

i.e. S^.V for S>0 (resp. S<0) takes the first (resp. last) S elements of V, and if (|S)>#V, additional slots in the 

result are filled by the typical element of V (0 for numeric V, ‘ ‘ for character V and ` for symbol V).  The first 

function ^.V differs from the special case of 1^.V:   

 

      ̂ .`abc `ddl `comp   

`abc  

 

in that V[[]IO] = ^.V is a scalar while 1^.V is a one-element vector; and for any A, ^.0#A yields a typical (scalar) 

element of A.  For general A, I is an integer vector such that (#I) equals ##A, and I[j] indicates the number 

of elements to take along the j-th axis.  For example  

 

      a 

ABCD 

EFGH 

IJKL 

      2 3^.a 

ABC 

EFG 

      _1 2^.a 

IJ 

 

drop !. is the opposite of take ^., it drops elements from a vector or array instead of taking them to form the 

result, yet it operates by the same rule: 

 

      3!.1 2 3 4 5 6 7 

4 5 6 7 

      _3!.1 2 3 4 5 6 7 
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1 2 3 4 

      1 2!.a 

GH 

KL 

      1 0!.a 

EFGH 

IJKL 

 

If S>#V, then S!.V results in an empty vector; for I!.A, if any I[j] is > length of A’s j-th axis, it results in an 

empty array.  The the rest function in LISP is the special case of 1!.V:   

 

      1!.1 2 3 4 5 6 7 

2 3 4 5 6 7 

 

The monadic $ is the reverse function, $A reverses elements in A for vectors, or along last axis of A:  

 

      $1 2 3 4 5 6 7 

7 6 5 4 3 2 1 

      $a 

DCBA 

HGFE 

LKJI 

  

The reverse function can be modified by the axis operator [1]([0] in case[]IO=0) to reverse an array along 

the first axis, or more conveniently, $. : 

 

      $[1]a       //$.a 

IJKL 

EFGH 

ABCD 

 

The dyadic $ is the rotate function; I$A rotates rows (along the last axis) according to integer(s) I.  For vector 

A, I is an integer, it rotates A by I positions to the right (resp. left) right if I>0 (resp. left). 

 

      3$1 2 3 4 5 6 7 

4 5 6 7 1 2 3 

      _2 $ 1 2 3 4 5 6 7 

6 7 1 2 3 4 5 

 

For a matrix A, I is an integer vector of length equal to the depth of A, and each I[j] determines the direction 

and amount the j-th row A[j;] takes; for I a scalar, then it rotates each row of A by that amount.  We have 

 

      a 

ABCD 

EFGH 

IJKL 

      1 2 3$a 

BCDA 

GHEF 

LIJK 

      1$a 

BCDA 

FGHE 

JKLI 

      _1 1 2$a 

DABC 

FGHE 

KLIJ 
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As in reverse, rotate can also be modified by an axis operator [1] to rotate around the first axis, or just use $.: 

 

      1$[1]a     //1$.a 

IJKL 

EFGH 

ABCD 

 

To rotate a high dimensional array A, R$A, R must be a scalar or #R must equal to _1!#A: 

 

      A<-2 3 4#!24 

      2$A 

 3  4  1  2 

 7  8  5  6 

11 12  9 10 

 

15 16 13 14 

19 20 17 18 

23 24 21 22 

      r  // r<-2 3#!6  

1 2 3 

4 5 6 

      r$A 

 2  3  4  1 

 7  8  5  6 

12  9 10 11 

 

13 14 15 16 

18 19 20 17 

23 24 21 22 

      l<-3 4#!12 

      l$.A 

13  2 15  4 

17  6 19  8 

21 10 23 12 

 

 1 14  3 16 

 5 18  7 20 

 9 22 11 24 

  

*rotate $[x]with x other than the first or last axis applies to higher dimensional arrays as well, but that has not 

been implemented at this time.   

 

The monadic transpose &. of a vector V just leaves V not changed; for a general array A, &.A  reverses the 

axises of A, i.e. it flips A, the first axis becomes the last axis and the last axis becomes the first, etc. It is easy to 

see for matrices 

 

      &.a 

AEI 

BFJ 

CGK 

DHL 

      &.4 6#!24 

1  7 13 19 

2  8 14 20 

3  9 15 21 

4 10 16 22 

5 11 17 23 

6 12 18 24  
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Now we can code an interesting piece of Eli that lists temperatures from C-4 to C15 in descending order 

together with their Fahrenheit degrees: 

 

      &.2 20#c,32+1.8*c<-$_5+!20 

15  59   

14  57.2 

13  55.4 

12  53.6 

11  51.8 

10  50   

 9  48.2 

 8  46.4 

 7  44.6 

 6  42.8 

 5  41   

 4  39.2 

 3  37.4 

 2  35.6 

 1  33.8 

 0  32   

_1  30.2 

_2  28.4 

_3  26.6 

_4  24.8 

  

General case for the dyadic transpose function I&.A. has not been implemented at this time, but the special 

case of taking diagonal with left argument being 1 1 is available. 

 

      1 1&.a 

AFK  

      w3 

1 2 3 

4 5 6 

7 8 9 

      1 1&.w3 

1 5 9 

      1 1&.w<-4 6#!24 

1 8 15 22 

 

We have already introduced the monadic function ravel (,) and a limited form of the dyadic function catenate (,) 

in sect. 1.2.  In general, for arrays A and B, A,B is defined with the restriction that (#A) and (#B) must be the 

same except the lengths of the last axis, so each row of the result is formed by putting together a row from A 

with a corresponding row from B.  Suppose w2<-2 3 4#!24 then we have: 

 

      w2,c2<-2 3 2#1  

 1  2  3   4 1 1 

 5  6  7   8 1 1 

 9 10 11 12 1 1 

 

13 14 15 16 1 1 

17 18 19 20 1 1 

21 22 23 24 1 1  

  

If one of the arguments is a scalar, then that scalar is extended to conform to the other operand similar to scalar 

extension for scalar functions:  

 

      'O',a,'X' 

OABCDX 

OEFGHX 
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OIJKLX 

 

If one argument is a vector whose length equals the length of the first dimension of the other operand, then 

catenate can also be carried out: 

 

      b1<-'xyz' 

      a,b1 

ABCDx 

EFGHy 

IJKLz 

 

The catenate function (,) can also modified by the axis operator [1] ([0] in case of index origin = 0) to 

catenate two operands along the first axis, which can also be written as ‘,.’: 

 

      b 

abcd 

efgh 

      a,[1]b     //a,.b 

ABCD 

EFGH 

IJKL 

abcd 

efgh 

      b2<-'w',b1 

      a,.b2 

ABCD 

EFGH 

IJKL 

wxyz 

      w2,[2]0 

 1  2  3  4 

 5  6  7  8 

 9 10 11 12 

 0  0  0  0 

 

13 14 15 16 

17 18 19 20 

21 22 23 24 

 0  0  0  0 

 

For two arrays of identical shape, we can specify a fractional number F in an axis specification after ‘,’,  

A,[F]B to get a new array which joins the two given arrays A and B along a new axis with its relative position 

indicated by F: for []IO=1, 0<F=0.5<1 implies the new axis will be the first axis and the F=1.5 last axis.  

This function is called laminate.  For example, 

 

      (!5),[0.5]10+!5 

 1  2  3  4  5 

11 12 13 14 15 

      (!5),[1.5]10+!5 

1 11 

2 12 

3 13 

4 14 

5 15 

      (!5),[1.5]10 

1 10 

2 10 

3 10 

4 10 

5 10 
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Now the example above for listing converted temperatures can be written as 

 

                               c,[1.5]32+1.8*c<-$_5+!20 

 

1.9 encode, decode and sort  

 

For a vector of integers R and a scalar number A, (R<.A), the encode of A by R gives an encoding of A for radix 

R, and it is of the same length as that of R.  For example, 

 

      2 2 2<.32.5 

0 0 0.5 

      2 2 2 2 2 2<.32.5 

1 0 0 0 0 0.5 

      2 2 2 2<.12 

1 1 0 0 

      8 8 8<.12 

0 1 4 

      10 10 10<.12 

0 1 2 

 

give the binary, octal and decimal representations of the number on right.  R needs not to be uniform: 

 

      24 60 60<.3723 

1 2 3 

 

means 3723 seconds is the total time of 1 hour 2 minutes and 3 seconds.  For a vector A, each j-th column of 

R<.A is R<.A[j]: 

 

      2 2 2 2<.3 15 8 

0 1 1 

0 1 0 

1 1 0 

1 1 0 

 

In general, #R<.A �� (#R),#A.   

 

The decode function R>.A is the inverse operation of encode.  We see that 

 

      24 60 60>.1 2 3 

3723 

      (3#10)>.0 1 2 

12 

      (4#2)>.1 1 0 1 

13 

      2 2 2 2>.4 3#0 1 1 0 1 0 1 1 0 1 1 0 

3 15 8 

 

R>.A reduces the rank of A by 1 and the length of the first axis of A must equal to the length of R. 

 

Eli has two sorting functions grade up <V and grade down >V for vector V, <V is a permutation of the indices of 

V so that V[<V] is in a non-decreasing order.  If V is of alphabet characters, it is the alphabetic order.    

 

      <'CEA' 

3 1 2 

      V<-52 84 4 6 53 68 1 39 7 42 

      <V 
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7 3 4 9 8 10 1 5 6 2 

      V[<V] 

1 4 6 7 39 42 52 53 68 84 

      cc<-'cbA12df' 

      cc[<cc] 

12Abcdf 

 

The grade down function >V similarly yields a permutation of indices of V so that V[>V] is in a non- increasing 

order.  Note: negation of grade down must be written as - >, not as -> which is designated for the branch 

symbol.  Usually, no blanks are required between primitive functions, or a primitive function and a 

literal/variable similar to APL.  This case is a rare exception. 

 

1.10 execute, format and other mixed functions 

 

The execute function !.S simply executes a character string S which represents a line of legal Eli code. 

 

      v<-10 

      !.'v<-10*.2' 

      v 

100 

 

It can also turn string of digits into a number and a string which is preceded by a ‘`’ into a symbol: 

 

      !.'123' 

123 

      !.'`abc' 

`abc 

 

If there is any error during execution of S, relevant error message will be displayed.  Why should there be such 

a primitive function, can’t we just type S into our console?  It is important to realize that an Eli session is either 

in execution mode or in function edit mode; so far for convenience, all our presentations are in execution mode.  

Hence the function!. looks superfluous; but when !.S is embedded in a function text with S possibly a variable, 

it would make execute a very powerful tool.   

 

So far character data and numbers cannot be mixed together; what if we want to write a report with numeric 

results?  The monadic format function +.A when applies to a numeric or a symbol data A turns A into its 

display in characters: 

 

      #D<-+.1 2 3 

5 

      ‘A’,D,’B’ 

A1 2 3B  

      +.`abc `ddl `comp 

abc ddl comp 

      #+.`abc `ddl `comp 

12 

 

If we want to display a group of numbers in column form, we need to reshape it into a one column matrix first.  

To display the six states’ students’ distribution we calculated in sect. 1.6, we do 

 

      ST6,’ ’,+.6 1#3 2 3 4 2 1 

CT 3 

MA 2 

NJ 3 

NY 4 
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PA 2 

RI 1  

      +.3 1#`abc `ddl `comp 

abc  

ddl  

comp 

 

The dyadic format function P+.A takes a left argument P to specify how the formatting should be done in detail.  

At present this is not implemented in Eli yet.   

 

Random number generator is quite useful.  For positive integer N, the monadic function roll ?.N randomly 

picks a number from !N (so it depends on []IO) 

 

      ?.100 

14 

 

The function also depends on a seed, the system variable []RL which is set to 16807 in a CLEAR workspace.  

For a vector V of positive integers of length l, ?.V is carried out by executing ?.V[i] l-times.  In particular, if 

we set []IO=0, then we have a convenient way to generate a bits string of certain length. 

 

      ?.100 1000 

76 459 

      []IO<-0 

      ?.16#2 

1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 

 

For the dyadic function deal A?.B, both A and B must be positive integers with A<=B; A?.B picks A distinct 

numbers from !B (please remember there is a ‘.’ after ‘?’ for random number generators) 

 

      10?.100 

41 68 58 93 84 52 9 65 41 70 

 

The monadic form of |.A is the factorial function, and the dyadic A|.B is the binomial function, that of taking 

A distinct items from a collection of B items: 

 

      |.6 

720 

      5|.7 

21 

      |.5 8 

120 40320 

      7|.10 

120 

 

We note again that there is a . after | compared with common mathematical notations ! for factorial and binomial.  

Also, we see that the factorial function |. is actually a scalar function.   

 

The monadic (mixed) function type denoted by :x gives out the numeric designation of the type of its 

argument; :x is 0 if x is boolean, 1 if x is integer, 2 (4) if x is a floating point (complex) number, 3 if x is 

character, and 5 if x is of symbol type, etc., x needs not be a scalar. This function is useful in some applications.     

 

There is another pair of primitive functions, the monadic and dyadic functions of the domino symbol #. is for 

matrix inverse #.M and matrix divide A#.M which is useful for solving system of linear equations. 
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      m<-3 3#4 6 0 3 2 2 1 3 4 

      m 

4 6 0 

3 2 2 

1 3 4 

      #.m 

_3.84615e-002  0.461538 _0.230769 

 0.192308     _0.307692  0.153846 

_0.134615      0.115385  0.192308 

      m+:* #.m 

1            0            0            

0            1            0 

0            0            1  

 

(*some of the 0s are not exact due to precision).  Matrix divide, the dyadic form of #., is a generalization of 

matrix inverse, which can be seen as a matrix divide with the left operand being the identity matrix.  For A#.B 

to be defined, both A and B must have rank no more than 2, and A#.B is defined to be that of a matrix of shape 

(1!.#B),1!.A which minimizes +/,(A-B+:*A#.B)*.2 (columns of B must be linearly independent, if A or B is a 

vector, then it is regarded as a one column matrix). For two vectors x and y, to compute regression using 

least-square method, we simple do 

 

      y#. x.:*. 0 1  

   

The abundance of primitive functionss in Eli may need a bit of time to get used to for C/MATLAB programmers. 

However, providing commonly used functions as language primitives not only relieves one the need to 

remember many library function names but offers consistency and clarity and encourages a dataflow style of 

programming as we shall see in examples in the next chapter.  Since most primitives in Eli are array primitive, 

that is, they apply directly to arrays; programming solutions in Eli are often thru arrays, not iterations thru loops 

as in C/FORTRAN.  
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2. Lists and related Operations   

2.1 lists, enclose and raze 

 

The arrays we dealt with so far are all homogeneous, i.e. the elements in an array are all of the same type, 

numeric, character or symbol.  What can we do if we want to operate on non-homogeneous data, or data which 

are not rectagular? Eli provides lists to organize such data: a list is a group of items, each of which can be a 

scalar, an array, or another list, separated by ‘;’: 

 

      a<-(`abc `ddl `comp;1 2 3) 

      a 

<`abc `ddl `comp 

<1 2 3 

      #(`abc `ddl `comp;1 2 3) 

2 

      L<-(`abc `ddl `comp;1 2 3) 

      L[1] 

`abc `ddl `comp 

      L[2] 

1 2 3 

      (s;n)<-L 

      s 

`abc `ddl `comp 

      n 

1 2 3 

      L1<-(`a `b;L) 

      L1 

<`a `b 

<<`abc `ddl `comp 

 <1 2 3 

 

We see that a list can be counted and indexed like a vector.  Most importantly, a list L can be assigned to a 

group of variables all at once, where the number of variables is equal to #L.  A list can be entered with items 

containing expressions or another list: 

 

      a<-2 3 4 

      (a+1;$'avc';`rr `bb) 

<3 4 5 

<cva 

<`rr `bb 

      (2 3 4;(`ab;'abc');;!10) 

<2 3 4 

<<`ab 

 <abc 

< 

<0 1 2 3 4 5 6 7 8 9 

 

To enter a list of one item, we employ the monadic primitive function enclose <.: 

 

      #L<-<.2 4#!12 

1 

      L 

<1  2  3  4 

 5  6  7  8       

      Lm<-<.(!3;'abc';`x `y) 

      Lm 

<<1 2 3 
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 <abc 

 <`x `y 

 

Lists can be catenated and have indexed assignments 

 

      #L0<-L,<.'abc' 

2 

      L0 

<1  2  3  4 

 5  6  7  8 

<abc 

  

reshape does not work for lists, but a special case of reshape works for allocating a list of n empty items 

(denoted by the underline symbol _) 

 

      #Ln<-3#_ 

3 

      Ln[1 2]<-L0 

      Ln 

<1  2  3  4 

 5  6  7  8 

<abc 

< 

 

take and drop work on lists as expected: 

 

      3^.L 

<1  2  3  4 

 5  6  7  8 

< 

< 

      1!.Ln 

<abc 

< 

 

The first function ^. also applies to a list L, i.e. ^.L is L[[]IO]; for L as above, we have 

 

      ̂ .L 

1  2  3  4 

5  6  7  8 

 

Hence, if a list L1 which has only one item, the function ^.L1 serves as the disclose of L1. i.e. the inverse of 

the enclose function.  

 

For a more general list Ll which is homogeneous, i.e. as defined recursively all items in Ll are all of the same 

type, either numeric, character or symbol (and later temporal), then the monadic function raze ,.Ll is defined 

to be a vector resulting from concatenating recursively all items in Ll.  So raze turns a list into a vector if it is 

homogeneous.  For example, 

 

      l<-(1;2 3) 

      L<-(2.1 3.5 6;7 8;l)  

      L 

<2.1 3.5 6 

<7 8 

<<1 

 <2 3 

      ,.L 

2.1 3.5 6 7 8 1 2 3 
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      chl<-('ABC';'GH';'WW225E') 

      ,.chl 

ABCGHWW225E 

 

2.2 partition, partition count and grouping 

 

enclose turns a scalar or an array into an one item list.  To turn a vector into a more general list, ELI has a 

dyadic primitive function partition y||x, where x is the source vector, and y is a positive integer or a vector of 

non-negative integers specifying how x is going to be partitioned into a list.  If y is a single number, then x is 

cut into a list with each item has y elements from x sequentially, except the last item which may have less than y 

elements from x if there are less than y elements in x left to fill.  For example, 

 

      w<-11?.100 

      w 

14 76 46 54 22 5 68 94 39 52 84 

      3||w 

<14 76 46 

<54 22 5 

<68 94 39 

<52 84 

 

If 1<^y, then x is cut into a list L such that i-th item of L has the next y[i] elements of x, i=1..^y: 

 

      3 4 5 || w 

<14 76 46 

<54 22 5 68 

<94 39 52 84 

 

If x is a matrix, or an array in general, then the partition y||x cuts x along the first axis according to y: 

 

      m<-5 4#!20 

      2 3 1||m 

<1 2 3 4 

 5 6 7 8 

< 9 10 11 12 

 13 14 15 16 

 17 18 19 20 

< 

  

The monadic form of || is the partition count function; its argument x is a boolean vector starting with a 1 and 

its result ||x is an vector of integers where each element is the length of a segment starting with 1 and ending 

with the last 0 before the next 1. 

 

      ||1 0 0 1 0 0 0 1 0 0 0 0 

3 4 5 

      (' This is an example'=' ') 

1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 

      ||(' This is an example'=' ') 

5 3 3 8 

      (||(' This is an example'=' '))||' This is an example' 

< This 

< is 

< an 

< example 
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Another primitive function which produces a list based on a vector x is grouping: >.x is a list of indices of x 

such that each item in the result consists of indices of elements in x corresponding to unique values in x, i.e. 

(#>.x) = #=x, (>.x)[i] is ?x=(=x)[i] for i from 1 to #=x.  For example, 

 

      stk 

`ibm `appl `ibm `hp `goog `hp `ibm `ibm `appl `ibm `hp `goog `hp `ibm `ibm `appl `ibm `hp  

      il<->.stk 

      il 

<1 3 7 8 10 14 15 17 

<2 9 16 

<4 6 11 13 18  

<5 12  

     

For a vector V and a list I whose elements are legitimate indices of V (i.e. for all i in each item I[j], V[i] is 

well-defined)  

    
          V[I] 

 

is a list of the same structure as that of I, i.e. V[I][j] is V[I[j]] for each j in !#I.  

 

      V 

14 76 46 54 22 5 68 94 39 52 

      I<-(1 2;3 4 5;6 7 8 9;10) 

      I 

<1 2 

<3 4 5 

<6 7 8 9 

<10 

      V[I] 

<14 76 

<46 54 22 

< 5 68 94 39 

<52 

 

Suppose that   

 

      prc  

109.1 523.6 107.2 37 358 35 102.3 103.2 551 99.8 33 370.1 31.2 98.9 101.9 588 100 30.5 

 

is a vector of corresponding trading prices of companies whose stock symbols appeared in stk above;  then the 

following 

 

      prc[>.stk] 

<109.1 107.2 102.3 103.2 99.8 98.9 101.9 100 

<523.6 551 588 

<37 35 33 31.2 30.5 

<358 370.1 

 

is a list of stock prices grouped by trading symbols.  With each operator in the next section, we have   

 

      prices<-prc[>.stk] 

       

^"prices 

<8 

<3 

<5 

<2 
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2.3 the each operator 

The each operator ” operates on lists, or a scalar/array and a list.  For a monadic function f, and a list L, f”L 

is evaluated by applying f to each component L[j] of L to result in a vector or another list Z of the same 

structure as that of L: #f”L is of the same (length) as #L and each element of Z[j] is fL[j] which must be 

well-defined for all j. For V and I as in the previous section, we have 

 

      V1<-V-22 

      W<-V1[I] 

      *”W 

<_1 1 

< 1 1 0 

<_1 1 1 1 

< 1  

 

Since this result is homogeneous, we can apply raze to it:   

 

      ,.*”W 

1 1 1 1 0 1 1 1 1 1  

      

We note here that the function f associated with operators we discussed earlier must be scalar functions.  In 

case of the each operator, f can be a mixed function, a derived function or even a defined function (to be 

introduced in the next chapter).  For example, 

 

      ,.#”W 

2 3 4 1 

   

For numeric L, +/”L is a vector of sums of each item in L: 

 

      ,.+/”W 

46 56 118 30 

  

+\”L is a list of same structure as that of L with each item the partial sum of the corresponding item of L. avg”L 

is similarly defined for a defined function avg. 

 

For a dyadic function g, a scalar s and a list L, s g” L is defined by applying (s g) to each item of L as (s g 

L[i]).  For example, 1+”L adds a 1 to each items in L; 1^.”L will result in a vector or list, depending on 

whether L is homogeneous or not, of length #L consisting of all first elements of items in L.  For an vector a of 

the same length as that of L, a g” L is defined if a[i] g L[i] is defined for each i in !#L.  For an one-item 

list l, l g” L is defined if (^.1) g L[i] is defined for each i in !#L.  L g” r is similarly defined for a 

scalar/vector or one item list r .  For two lists L1, L2, L1 g” L2 is defined if  

 

                                   L1[i] g L2[i]  

 

is defined for each i in !#L1 where (#L1)=#L2, and as in the monadic case, g can be a mixed function, derived 

function or a defined function, but for each i, L1[i] g L[i] must be well-defined.  We have 

 

      L<-(1 2;3 4 5) 

      1+"L 

<2 3 

<4 5 6 

      L2<-(7 8;1 2 3) 

      L2+"L 
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<8 10 

<4 6 8 

      #"L 

<2 

<3 

      (2 3;5;2 3 4)#"!6 

<1 2 3 

 4 5 6 

<1 2 3 4 5 

<1 2 3 4 

 5 6 1 2 

 3 4 5 6 

 

 1 2 3 4 

 5 6 1 2 

 3 4 5 6 

      L*"2 

<2 4 

<6 8 10 

 

Suppose we want to produce a group of 4 consecutive integers but with different starting points, we do 

 

       0 _1 1 2+"<.!5 

<1 2 3 4 5 

<0 1 2 3 4 

<2 3 4 5 6 

<3 4 5 6 7 

 

Note that it is important to enclose !5, and in the each reshape below enclose 2 3 is necessary: 

 

      a<-(1 2;3 4 5;7) 

      2^."a 

<1 2 

<3 4 

<7 0 

      _1!."a 

<1 

<3 4 

< 

      10,"a 

<10 1 2 

<10 3 4 5 

<10 7 

      a,"10 

<1 2 10 

<3 4 5 10 

<7 10 

      #"a 

<2 

<3 

< 

      ̂ "a 

2 3 1 

      3#"a 

<1 2 1 

<3 4 5 

<7 7 7 

      2 3#"a 

length error 

      2 3#"a 

         ̂  

      (<.2 3)#"a 
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<1 2 1 

 2 1 2 

<3 4 5 

 3 4 5 

<7 7 7 

 7 7 7 

      (<.2 3)?"a 

<1 0 

<0 1 

<0 0 

      a?"<.2 3 

<0 1 

<1 0 0 

<0 

      ?"(0 1 0 0 1;1 0 0;0 0 1 0 0 0 1) 

<2 5 

<1 

<3 7 

      6_."a 

<1 2 

<3 4 5 

<6 

  

The each operator can also apply to derived functions as well as defined functions (see next chapter). 

 

      +/"a 

<3 

<12 

<7 

      ~./"a 

<2 

<5 

<7 

       

2.4 temporal data 

 

There are six types of temporal data in Eli to handle date and time: date, time, month, minute, second, 

datetime: 

 
      d<-2012.04.02                  //type date  

      d 

2012.04.02 

      d+1 

2012.04.03 

      t<-14:37:07.123                //type time 

      t+100 

14:37:07.223 

      23:11:12+10*1 2 3             //type second 

23:11:22 23:11:32 23:11:42 

      dm<-2012.04m                   //type month 

      dm+1 2 3 

2012.05m 2012.06m 2012.07m 

2012.04.02T14:37:07.123+55  //type datetime 

2012.04.02T14:37:07.178 

      23:30+30                        //type minute 

00:00 

      23:30-15 

23:15 

      23:15<22:10 

0 
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We see that addition and subtraction to temporal data are interpreted according to their type, and no other 

arithmetic function applies to temporal data.  Furthermore, unlike numeric data, both operands temporal data 

must be of the same type.  This last rule also applies to relational functions comparing two temporal data.  

The format function +. can be used to convert a temporal data into its character representation:     

 

      #dtc<-+.2012.04.02T14:37:07.178  

23    

      10^.dtc 

2012.04.02 

      11!.dtc 

14:37:07.178 

 

In fact, there are two functions in based on this, dt2d and dt2s which converts a datetime to its character 

representation in date and second while dt2dat and dt2sec which converts it into type date and second in the 

standard library (see sect.4.5); and a function there to convert a date after 2000.01.01 into a weekday: 

 

      t 

2013.06.20T19:00:16.478 

      dt2d t 

2013.06.20 

      dt2s t 

19:00:16       

      dt2dat t   //a scalar   

2013.06.20 

      dt2sec t   //a scalar   

19:00:16       

      dat2wdc dt2dat t 

Thu 

 

There are also functions converting date or seconds into numeric vectors in the standard library: 

 

      dt2ymd t 

2013 6 20 

      dt2hms t 

19 0 16 

      #dt2ymd t 

3 

      #dt2hms t 

3  
 

Temporal data are used for storing time stamps in database systems.  We note that APL systems in general, 

other than kdb, only provide a system function []TS to record a time stamp, not temporal data types as data of 

first class citizen. 
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3.  Defined Functions and Sequence Control    
3.1 defined functions and evaluating one line  

 

In the last chapter we introduced all primitive functions and operators provided by the ELI system.  In this 

chapter, we shall describe how a user can define one’s own function.  To define a function, you must be in edit 

mode; to switch from execution mode to edit mode, you type in the del symbol @. followed by a name for the 

function you want to define 

 

      @.add 

 

The system switches to edit mode by creating a new window in Microsoft Windows, and you type in the 

definition of your function 

 

[0]  z<-a add b 

[1]  z<-a+b 

[2]  @. 

 

type another @. when you finish defining your function and the system switches back to execution mode.  In 

Linux/Mac OS, you can type either just the del symbol @. or @. followed by the whole function head to switch 

to edit mode.  Please note that since Linux/Mac OS version is line-based, once you typed in your head line you 

cannot go back to make corrections; in the first case you start defining your function by typing in the head line, 

and in the second case you continue by typing in the first line of your function.  When you finish your function 

definition, just as in Windows, types a matching @. in a new line to switch back to execution mode.  We can 

check to see whether the function is there, see its’ definition and try it out. 

   
      )fns        (to see all defined functions that are available in this workspace) 

add  

      3 add 4 

7  

      {add} 

---------add-------- 

 [0] z<-a add b 

 [1] z<-a+b 

--------------------  

 

Another way to see a defined function’s text is using the system function []CR; the argument to []CR is the 

function name and the result is the character matrix of the function text: 

 

      []CR 'add' 

z<-a add b 

z<-a+b     

      #[]CR 'add' 

2 10 

  

A defined function can take one (right) or two arguments (left and right) just as primitive functions do, i.e. it can 

be a monadic or dyadic function; but a defined function can have no argument, such a function is called niladic.  

A defined function can return a result or return no result.  The result returned by a defined function can be an 

array as well as a scalar.  The first line (line [0]) of a defined function is of the form 

 

                     function-header <;local-variable-list> 
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function-header    must be one of the six forms below: 

type         valence             have result                no result 

niladic      0       R<-FN                        FN 

monadic                 1                   R<-FN B                     FN B 

dyadic      2                   R<-A FN B                  A FN B          

 

where valence is the number of arguments the function takes, R is the name of the returned result, FN the name 

of the function, A is the name of the left argument and B is the name of the right argument (you can, of course, 

give different names to each one of them).  The arguments can be arrays and lists, not just scalars. We can use 

an explicit list notation on the right to effectively input more than 2 arguments: 

 

      ̀ sales bk_load (sa;cu;it;am;py;dt;sp) 

 

In fact, the right argument can consist of several sub-arguments without formally entering it as a list and 

unpacking its components in the first line of the function.  For an example: 

 

-------margfn------- 

[0]   z<-le margfn (a;b;c) 

[1]   []<-c                     //output c 

[2]   z<-le+a+:*b 

--------------------       

      x<-3 4#!24 

      y<-4 2#_1 2 3 _5 8 10 1 0 

      x 

1  2  3  4 

5  6  7  8 

9 10 11 12 

      y 

_1  2 

 3 _5 

 8 10 

 1  0 

      1000 margfn (x;y;'a test for multi-arg function.') 

a test for multi-arg function. 

1033 1022 

1077 1050 

1121 1078 

 

The local-variable-list    in the function header-line is optional; it is there only if you wish to localize a 

group of variables. The list starts with a ‘;’, and variable names in the list are separated by ‘;’.  If a variable 

named V1 is localized in a function AF, then first during execution of AF, Eli will look for the value of V1 

assigned inside AF regardless whether a variable also named V1 exists in the environment where AF is called; 

second, when AF finishes execution the value of V1 obtained in AF will disappear. In other word, any variable 

named V1 in the environment is protected by the localization of V1 in AF.  We illustrates with the following 

example 

 

       @.BF:… 

         … 

         V1<-1 

         AF 

         … 

       @. 

 

       @.AF;V1 

         … 
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         V1<-V1+1 

         … 

       @. 

 

Function BF calls AF after assigns value 1 to V1.  However, if there is no assignment to variable V1 before 

execution of AF reaches the line of adding 1 to V1, a value error will result. After the function AF finishes and 

returns to its caller BF, the variable V1 still holds its old value 1 before the invocation of AF.  The code in AF 

involving V1 accesses and modifies its private copy of a variable named V1. Since the localization, or 

shadowing, of variables in Eli depends on the calling sequence of functions, it is called dynamic binding of 

identifiers.  This is in contrast to the static binding of identifiers in PASCAL.  

 

A function’s result, if there is any, and function parameters, i.e. arguments, are considered to be localized 

automatically.  Hence, parameter passing in ELI is by-value.  For example, when the function FN1  

 

      @.Z<-A FN1 B;C 

         … 

         … 

      @. 

      … 

      Z<-bigA FN1 bigB 

 

is called by the line above, where bigA and bigB are two large arrays, then first these two arrays are copied into 

A and B at the start of the function FN1, and their values would not be changed at the of the end of the function 

call.  Second, if FN1, thru some path, exits without assigning Z any value then the line will result in a value 

error after function exit.  Copying large arrays in parameter transmission certainly is inefficient.  There are 

programming techniques to put such arrays as global variables, or use sophisticated compiler techniques to 

avoid copying in case there is no modification to their elements in FN1; but we are not going into detail 

discussion of this issue in the Primer.    

 

With the classification of (user) defined functions done, we can now give a more formal definition on how to 

evaluate one line of code L in Eli as follows.  Start from the right end of L, it must begin with a literal data, a 

variable or a niladic function with a result.  For a variable get its value, or evaluation stops with a value error; 

if it is a niladic function, execute that function and get its return value.  In each case, we get a value cv.  If 

there is nothing to the left of it, cv is the final value of the line L; otherwise what to its left must be a primitive 

function pf or a defined function df .  For a monadic df, we execute df cv to get a new cv and keep going.  If df 

is a dyadic function, we look to the left of df to get the value lv of its left argument; in case there is nothing to 

the left of df, we get a valence error.  What to the immediate left of df must be a literal data, a variable with 

value, a niladic function with a result or a right parenthesis ‘)’.  In the first three cases, we get lv as before and 

execute lv df cv to get a new cv and keep going.  In case of ‘)’, we recursively evaluate the code inside (…) to 

get a value lv and proceed as in the previous 3 cases.  For a pf, if pf can only represent a monadic functions or a 

dyadic function, then we do the same as what we described for df.  If pf can either be dyadic or monadic, we 

decide by checking whether there is literal, variable, niladic function with result or a right parenthesis to the left 

of pf and proceed accordingly.     

 

3.2 one line examples 

      

We have already seen several examples of one line code in chapter 1 in the process of introducing various 

primitive functions and operators.  We shall now add two more examples from the perspective of implementing 
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specific tasks thru a process of refinement.  The strategy is to first layout a function which has the basic idea 

that works, then make it more efficient, or works for more general case.  From these examples, we also gain an 

understanding of the dataflow style of programming (this refers to writing long line of code where output from 

one expression is immediately used as input to the next expression) subtly encouraged by Eli, and come to 

appreciate the difference between APL, Q, Eli in one camp and conventional array languages such as MATLAB, 

R, Octave and SciLab in the other.  

 

Our first example is that of finding prime numbers up to N.  The idea is to setup a multiplication table of 

2..N by 2..N, then numbers not in that table are primes:  

 

      {prim} 

--------prim-------- 

 [0] z<-prim n 

 [1] z<-(~v?v.:*v)/v<-1!.!n 

-------------------- 

      prim 100 

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 

  

The program prim is clearly inefficient, but basic idea of having v as the vector 2..n and using ~…? 

multiplication table is clear enough.  We can improve on several fronts.  First, other than 2, all primes are odd 

numbers; second a smaller multiplication table of square root of n by one third of n should be large enough to 

cover all numbers up to n.  Hence, we have 

 

      {prime} 

--------prime------- 

 [0] z<-prime n;v 

 [1] z<-2,(~v?(2!.!_.n*.0.5).:*2!.!~.n%3)/v<-1+2*!_.(n-1)%2 

-------------------- 

      prime 300 

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 

137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 

269 271 277 281 283 293 

 

Here v is the vector of odd number from 3 to near n, and 2 is added to the result list after all odd primes up to n 

have been selected from elimination of multiples.   

 

The second example is word counting: give a text TX which is a matrix of characters consisting of English 

alphabets, punctuation marks and blanks; we would like to count the number of words in TX.  We can assume 

that if a word ends in a punctuation mark not on the text boundary, it is always followed by a blank.  Hence to 

count words in TX is somehow related to counting blanks in TX. First let us make a simplifying assumption that 

each word ends in precisely one blank.  So, we just count the number of blanks in TX by 

 

      wc<-+/+/b<-‘ ‘=TX 

 

where b a boolean matrix of the same shape as that of TX which has a 1 at each position corresponding to a 

blank in TX.  +/b is a list of integers indicating the number of blanks in each row of TX, and +/+/b is the total 

number of blanks. 

 

The simplifying assumption has three problems: 1) a word may end in the right side boundary, 2) there may be 

more than one blank following a word, and 3) in the beginning of a line we may have blank(s) to start with.  To 

overcome these problems, we construct another boolean matrix btl by removing the first column of b and gluing 
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a column of 1’s to its right.  This has the same effect as putting a column of blanks at the right boundary to end 

a word but ignoring the first column.  A blank which truly ends a word is then a blank whose predecessor is not 

a blank that is a 1 in btl but a 0 in b.  For example            

 

      TX 

 ABC CFM 

N, GH  D 

F ABC GF 

      b<-' '=TX 

      b 

1 0 0 0 1 0 0 0 

0 0 1 0 0 1 1 0 

0 1 0 0 0 1 0 0 

      btl<-(0 1!.b),1 

      btl 

0 0 0 1 0 0 0 1 

0 1 0 0 1 1 0 1 

1 0 0 0 1 0 0 1 

      btl^~b 

0 0 0 1 0 0 0 1 

0 1 0 0 1 0 0 1 

1 0 0 0 1 0 0 1 

 

Hence, the function we want is  

 

      @.z<-COUNT TEXT;b  

       z<-+/+/((0 1!.b),1)^~b<-‘ ‘=TEXT 

      @. 

      COUNT TX 

8   

 

In contrast to the C program solution in sec.1.5.4 in [3], we see that the style of C programming is sequential in 

the sense the solution is reached through a loop while in Eli it comes from a calculation of global characteristics.  

The Eli approach is what we call array oriented programming.  It takes time to gain proficiency in writing this 

style of code for a person comes from C/C++ but it accrues advantage in parallel processing which we will not 

going into details to explain here.  

 

3.3 transfer of control by branching and stopping 

 

So far we have only seen only examples of straight-line code, and presumably we can execute one line after 

another in a multi-line function code.  How do we write code with alternate choices and loops? A simple 

mechanism to do that in Eli is branching which is of the form 

 

-> branch-expression  
When we execute a function F line by line in their line number (textual) order until we hit a branch expression; 

we evaluate that expression just like we evaluate any other Eli line. If the expression evaluate to an empty vector, 

execution continues with the next line in F.  If it is 0, i.e. 

 
          -> 0 
 

or any number out of range of F’s line numbers, function F returns to its’ caller which can be Eli system or 

another function G. If it is the line number of a statement in F, that statement is to be executed next. A statement 
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in a function text can be prefixed by a label, and that label has the value of the line number of that statement.  

For example  

 
          [5]LABEL1: X<-X+1 

 

The label LABEL1 has value 5.  Frequently, one uses the following form    

 
          ->(~BE)/ELSE 

          … 

          ELSE:… 

 

to jump to the ELSE line in case BE is false.  Of course, ELSE: can be a line precede the branch line thus forms a 

while or for loop.  In general, a way to do multiple branching is as follows 

 

          ->(BEV)/L1,L2,…,Ln 

 

where BEV is a boolean vector and the branch goes to the line label Lk if k-th bit is the first set bit of BEV.  

Another frequently used branching pattern, assuming []IO=0, is 

 

          ->(L0,L1)[BEX] 

 

which branches to either L0 or L1 depending on whether BEX is false or true.  

 

If the branch-expression after -> is a character string instead of a line number, the execution would stop after 

display the character string.  For example, 

 

          ->’L0 and L1 are not equal’ 

 

Note that this differs from output the message and then ->0. For in the second case, execution would continue 

after return of the function where the message is triggered. 

 

3.4 control structures 

 

For numerical computations, where need of branching is infrequent once many loops would have been 

eliminated by array primitives, transfer of control by computed goto is tolerable. But for implementing complex 

systems such as a modern compiler that is quite inconvenient.  *Eli has control structures with seven reserved 

words: 

        
            if   else   case   for   while   break   continue  
 

and we define a statement in Eli as follows: 

 

statement:         simple-statement     or   {list of statements}   

if-statement:       if (bool expression) statement [[else if (bool expression)]” else statement 

  

case-statement:    case (case expression)  {case-lists [else statement]} 

                 case-list : v1[,v2..vn]: statement 

for-statement:     for (idxv:for-forment) statement 

                 for-forment: strv;endv[;step] or  idxlist 
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while-statement:   while (bool expression) statement  

 

break and continue can only present inside a for statement or a while statement, and their effects are to exit 

the enclosing statement or to start a new iteration. case expression must be an expression of discrete scalar type, 

i.e. it must result in an integer, a character or a symbol: 

 
@.z<-tst_cas x           

  case (:x) {          

    0,1:z<-x+10        

 2:z<-x*10             

 3:z<-x                

 5:case (x) {          

   ̀ select:z<-'SELECT' 

   ̀ exec:z<-'EXEC'     

   else z<-'***'       

   }                   

 else z<-x+100         

  }    

@. 

      tst_cas 9 

19 

      tst_cas 1.2 

12 

      tst_cas 'ABC' 

ABC 

      tst_cas `ABC 

*** 

      tst_cas 20:55 

22:35 

 

A partial ordering < on a set S is a relation among elements of S such that  

 

               a, b, c in S,      a<b, b<c →    a<c  

 

Let us introduce an ordering among nodes of a directed graph G: 

 

              I<J if G[I;J]=1 

 

This is a partial ordering; a topological sort of G then is a linear ordering of G compatible with that partial 

ordering.  An algorithm (from Wirth[4]) to do a topological sort is the following: 

 

L ← Empty list that will contain the sorted elements 

S ← Set of all nodes with no incoming edges 

while S is non-empty do 

    remove a node n from S 

    insert n into L 

    for each node m with an edge e from n to m do 

        remove edge e from the graph 

        if m has no other incoming edges then 

            insert m into S 

if graph has edges then 

    output error message (graph has at least one cycle) 

else  

    output message (proposed topologically sorted order: L) 
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We note that for a node N, G[;N] indicates all nodes with edges to N, and G[N;] all nodes having edges from N.  

The code in Eli is as follows  

 

[0] L<-TSORT G;N;ML                           

[1] L<-!0                                     

[2] S<-(0=+/.G)/GL<-!1^.#G                       

[3] while (0<#S) {                           

[4]   L<-L,N<-S[1]                             

[5]   S<-1!.S                                  

[6]   ML<-G[N;]/GL                            

[7]   G[N;ML]<- 0                              

[8]   S<-S,(0=+/.G[;ML])/ML                    

[9]  }                                      

[10]if (0<+/+/G) []<-'Graph G is not acyclic.' 

 

      G 

0 1 0 1 0 1 0 0 

0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 

0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 1 

0 0 0 0 0 1 0 0 

      TSORT G 

3 5 7 1 8 2 4 6 

 

We remark here that []CR 'fn1’ always displays a defined function fn1 as entered while {fn1} only displays a 

function after the function fn1 has been executed at least once and where control structure statements have 

already been translated into standard branch forms.  For example, 

 

      )fload TSORT 

saved 2012.11.01 23:05:56 (gmt-5) 

      )fns 

TSORT 

      []CR 'TSORT' 

Z<-TSORT G;N;ML                         

L<-!0                                   

S<-(0=+/.G)/GL<-!^.#G                   

while(0<#S){                            

L<-L,N<-S[1]                            

S<-1!.S                                 

ML<-G[N;]/GL                            

G[N;ML]<-0                              

S<-S,(0=+/.G[;ML])/ML                   

}                                       

if(0<+/+/G)Z<-'Graph G is not a cyclic' 

else Z<-L                               

      {TSORT} 

--------TSORT------- 

-------------------- 

      )vars 

G 

      TSORT G 

3 5 7 1 8 2 4 6 

      {TSORT} 

--------TSORT------- 

[ 0]  Z<-TSORT G;N;ML 

[ 1]  L<-!0 
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[ 2]  S<-(0=+/.G)/GL<-!^.#G 

[ 3]  L0:->(~0<#S)/L1 

[ 4]  L<-L,N<-S[1] 

[ 5]  S<-1!.S 

[ 6]  ML<-G[N;]/GL 

[ 7]  G[N;ML]<-0 

[ 8]  S<-S,(0=+/.G[;ML])/ML 

[ 9]  ->L0 

[10]  L1:->(~0<+/+/G)/L2 

[11]  Z<-'Graph G is not a cyclic' 

[12]  ->L3 

[13]  L2:Z<-L 

[14]  L3: 

-------------------- 

  

3.5 recursive functions 

  

Eli support recursive functions.  An example is that of rprime: to find prime numbers up to N recursively. 

 

p<-rprime n;i                                                             

p<-2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 

if (n<=100) p<-(n>=p)/p                                                               

else {pl<-#p<-rprime _.n*.0.5                                                      

  b<-n#0                                                                    

  for (i:1;pl) b<-b&n#(-p[i])^.1                                                         

  p<-p,1!.(~b)/!n 

} 

  
      rprime 300 

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 

137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 

269 271 277 281 283 293 

 

What this function does is that it first stores the primes up to 100 in p, and then it checks the size of the 

parameter n.  If n is less than 100, then just select primes from p; otherwise recursively calls rprime with 

square root of n.  Then take out multiples of primes found so far.  This is a much more efficient function than 

our earlier PRIME function even though it is recursive. This function also illustrates how control structures 

improve program readability when there are alternate choices and irregular iteration, while ELI boolean array 

operations still support a succinct dataflow style coding. 

 

Finally, we recall that we stated in sect.2.3 that the each operator ” operates on defined functions and lists.   

For example, 

 

      rprime"(10; 100; 200) 

<2 3 5 7 

<2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 

<2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 

      107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 

      {add:x+y} 

add 

      (3;4) add" (6 7 9;10 11) 

<9 10 12 

<14 15 
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4.  System Facilities 

4.1 save and reload your work* 

 

You can save your work by rename your workspace and then save 

 

      )wsid NEW1 

      )save 

saved 2011-08-18 11.30.26 

 

Once you saved your workspace, you can reload it at a later time 

 

      )load NEW1 

 

A workspace you saved may contain errors or intentional stops, and this is indicated by the state indicator 

 

      )SI  

 

For example, if you finished writing a function FNT, and when executed it results in an error at line 3. 

Then the result of the system command above is 

 

      FNT[3]   

 

When you load such a workspace, you can resume the work you left and start debugging.   

 

Unlike in APL, a saved workspace cannot be copied into an existing workspace with a command  

 

      )copy NEW1 

 

To achieve the effect of a )copy, i.e. replacing any variable or function in the existing workspace with the one 

copied in when there is a name collision, we use )fcopy file1 to be explained later in this section.  In 

particular, system variables such as []IO would be refreshed by the one exists in the copied in file.  Please 

note that ELI does not allow a variable to be replaced by a function with the same name, nor a function replaced 

by a variable of the same name from another workspace.   

          

You can also output the functions and variables in a workspace, or some portion of it, to a file; but your 

workspace’s suspensions, i.e. )SI indicating unresolved bugs, will not be copied over.       

 

      )out file1 

      )out file2 FN1 FN2 A BC 

 

In the second case, only those items listed after the file name file2 would be sent to the output file.  These so 

called eli script files have file extension *.esf while that of workspaces have extension *.eli.  For the same 

group of variables and functions, an esf file is noticeably smaller than an eli file.  An esf file, or portion of it, 

can be copied in or loaded with the system commands 

 

      )fcopy file1 

      )fcopy file2 FN1 FN2 A BC 

      )fload file1 

 

In Windows, after installing ELI, there would be a subdirectory eli created in your Program Files directory 

which likely resides in C disk; eli has two subdirectories, bin and ws.  The Eli executable resides in bin. 
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Saved workspaces, outed or edited files and esf script files all reside in ws directory, and one need to put a 

prepared (text) file into the ws directory before one can )fload or )fcopy it.  In Linux/Mac OS, bin and ws 

are combined into one directory: elix/elim.  To see all workspaces and script or text files that are there, you 

type )lib 

 

      )lib 

RPRIME.esf    TSORT.esf     standard718.esf standard.esf  edb828.esf    edb828.eli    dbdata.txt    

dbdata.eli    edb.esf  edb.eli  test.eli    

 

To see only those workspaces or files starting with specific characters, you type 

     
      )lib ed 

edb828.esf    edb828.eli    edb.esf       edb.eli        

 

4.2 loading and copying script files 

 

You don’t need to input your functions in the edit mode of Eli; nor is it convenient or practical to input large 

variables through an interactive ELI session.  You can prepare as an ordinary text file, or what usually call a 

script file, of extension *.esf. (extension *.txt also works if no .esf file of the same name exists).  The script file 

can contain not only function definitions as in RPRIME example we see in the last chapter but also values for 

variables.  To do that you put 

 

&A I 2 50 80 

 … 

& 

 

The first line is the variable name followed by a character denoting its type (B:boolean; I:integer; E:float; 

J:complex number; C:character; S: symbol, D: temporal data, L: list; we note here for an item v in Eli the 

monadic function type :v gives an integer assigned to that type from 0,1,2,4,3,7,6 corresponding to the order 

above) and the rank and shape of that variable, then followed by the value of the variable in ravel order for all 

arrays.  For a scalar, instead of rank and shape, one writes a 0: 

 

      &a E 0  

      0.5… 

      & 

 

However, the specification for a list is recursive since it is not a simple array or scalar, i.e. each item in the list 

needs to be specified one after another.  For example, we have file ts2.txt as follows 

 

&lt L 1 3 

I 2 2 3 

1 2 3 4 5 6 

C 1 5 

'abcde' 

E 1 1 

0.5 

& 

      )fcopy ts2    //copy ts2.esf into ELI interpreter 

      lt 

1 2 3 

4 5 6 

abcde 

0.5 
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For a function FN1 with two arguments A, B and result Z, it is written similar to what we type in function edit 

mode   

 

      @.Z<-A FN1 B;C 

        … 

      @. 

  

If FN1 calls FN2, definition of FN2 must appear before FN1 if FN1 is in short form (*see below).  To load in a file 

named S1, type  

 

      )fload S1 

 

You can even put in executable statement such as ‘RPRIME 120’ in a script file; that statement would then be 

executed at the time of loading (or copying). 

 

There is a similar command with respect to copy in a script file S 

 

      )fcopy S 

 

It differs from )fload in that it would not start from a CLEAR workspace.  Existing functions and variables in 

the current workspace would remain unless there are functions and/or variables with the same names exist in S.  

In this case, they would be replaced by those from S.  An esf file can also include other system commands such 

as )load …, )fload …, )fcopy ….  

 

ELI also provides a short-form function definition facility as follows 

 

      {fnam: …} 

 

where fnam is the name of a function and either z or the last expression is the result of the function, while x is 

the right argument, and y is the left argument if present; all other variables are assumed to be local.  All 

statements must be a simple or if statement; two statements can be separated by ‘;’ in one line. Statements in 

short-form definition cannot access any global variable other than system variables.  Also comment line(s) 

must be outside of the function body {..}.  Moreover, a short-form definition of a defined function can be 

entered in execution mode of ELI.  For example 

 

      //average of a numeric vector 

      {avg: (+/x)%#x} 

 

For a more interesting example, let x be an annual interest rate in percent, y be the length of years of a loan, P 

the principal of a loan.  Then 

 

                J = monthly interest rate = x/(12*100) 

                N = number of months over loan = y*12 

                M= monthly mortgage payment = P * J/[1-(1+J)-N] 

 

//monthly payment for a loan of one dollar with annual interest rate of x% over y years 

{mthpaym1: J%1-(1+J<-x%12*100)*.-y*12} 

 

Then for a loan of P amount, the monthly mortgage payment at rate x over y years is 
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                M<-P*y mthpaym1 x 

 

4.3 input and output     

 

We have already discussed input and output files with functions and variables.  But in ELI, for simple output, 

we can do 

 

       []<-'Hello World!' 

Hello World! 

 

and an appearance of [] in code will wait for user input. ‘[)’ is for bare-output, i.e. the next output will not start 

from a new line.  

 

4.4 pre-defined functions in the standard script  

 

ELI system provides a script standard.esf which contains many frequently used functions.  Hence,   

 

      )fcopy standard 

 

will copy in the script file, then a group of pre-defined functions are avalable.  For example, they include 

 

{avg: (+/x)%_1^.#x}             //average of a num. vector or row-wise average of an array 

{median: ((0.5*w[m]+w[m+1]),w[m<-_1+[]IO+~.0.5*#x])[[]IO+2|#w<-x[<x]]} 

{gmean: (*/x)*.%#x}           //geometric mean of a numeric vector 

{stddev: ((+/(x-avg x)*.2)%#,x)*.0.5} //standard deviation of a vector 

{intersect: (y?x)/y}          //y intersects x, those of y which are in x  

{union: x,(~y?x)/y}           //y union x 

{less: (~y?x)/y}               //elements in vector y which are not in x 

{xor:  2|y+x}                   //exclusive or of boolean vectors y and x 

{last: x[#x]}                   //last element of a vector 

{triml: (&\x~=’ ’)/x}         //trim leading blanks off a character vector  

{trimr: $(&\r~=’ ’)/r<-$x}   //trim trailing blanks off a character vector 

{trim: triml trimr x}         //trim leading and trailing blanks 

{diag: x*(!1^.#x).:=!_1^.#x} //get the diagonal matrix of matrix x 

 

One can study the standard.esf file to see the functionalities of the pre-defined functions, or do a copy to 

bring in all processed pre-defined functions in the standard file.  For example,  

     
      )fcopy standard 

   avg 3 5 78 9 

23.75 

      median 3 5 78 9 

7 

 

For character strings, we have 

 

      lower 'ABC' 

abc  

      upper 'abc' 

ABC 
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The call s substr x takes a character string s, and produces a substring located at x[1] of length x[2] 

 

      'abcdefghijklmn' substr 5 6 

efghij   

 

To get up the diagonal, upper or lower triangle part of a matrix m, we do: 

 

      m<-5 5#!25 

      diag m 

1 0  0  0  0 

0 7  0  0  0 

0 0 13  0  0 

0 0  0 19  0 

0 0  0  0 25 

      triu m 

1 2  3  4   5 

0 7  8  9  10 

0 0 13 14 15 

0 0  0 19  20 

0 0  0  0  25 

      tril m 

 1   0  0  0  0 

 6   7  0  0  0 

11 12 13  0  0 

16 17 18 19  0 

21 22 23 24 25 

 

To get a n by n identity matrix, we call (n=5) 

 

      eye 5 

1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

 

The function det m gives the determinant of matrix m 

 

      m 

 3  5  3  1 

 0 11 12  7 

_5  6  8 10 

 9  3  5  3 

      det m 

_1428 

 

We have the random number generator ?. which stochastically picks an integer from a range. 

Often, we like to generate n random numbers from [0,1] for that we can call rand n: 

 

      rand 5 

0.131538 0.755606 0.458651 0.532768 0.21896 

 

and randm n gives an n by n matrix with entries from [0,1] 

 

      randm 5 

0.047045 0.678865 0.679297 0.934693 0.383503 

0.519417 0.830966 0.034573 0.053462 0.529701 

0.67115   0.007699 0.383416 0.066843 0.417486 

0.686773 0.588977 0.930437 0.846167 0.526929 

0.091965 0.653919 0.416     0.701191 0.910321 
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We recall from sect.1.8, that the primitive function ^. when applies to a matrix right argument the left argument 

must contain the length of its first axis (resp. last axis) when we only care about the last axis (resp. first axis).  

standard.esf provides the function take (resp. take1) to do what we want more conveniently: 

 

      m<-3 5#!15 

      m 

  1  2  3  4  5 

  6  7  8  9 10 

11 12 13 14 15 

      2 take m 

 1  2 

 6  7 

11 12 

      _4 take m 

  2  3  4  5 

  7  8  9 10 

12 13 14 15 

      2 take1 m 

1 2 3 4  5 

6 7 8 9 10 

      _4 take1 m 

 0  0  0  0  0 

 1  2  3  4  5 

 6  7  8  9 10 

11 12 13 14 15 

      

For two items A and B, to glue these two pieces along the first axis in a flexible way, i.e. if they are of different 

lengths in their last dimension, we pad one with fill elements to make them conformable for catenation, requires 

a bit work.  But there is a pre-defined function cat in standard to do just that: 

 

      c1 

AAAA 

AAAA 

      c2 

BBBBB 

BBBBB 

BBBBB 

      c1 cat c2 

AAAA  

AAAA  

BBBBB 

BBBBB 

BBBBB 

      c2 cat c1 

BBBBB 

BBBBB 

BBBBB 

AAAA  

AAAA       

      100 cat nm<-3 6#!18 

100  0  0  0  0  0 

  1  2  3  4  5  6 

  7  8  9 10 11 12 

13 14 15 16 17 18 

      nm cat 90+!7 

 1   2  3  4  5   6  0 

 7   8  9 10 11 12  0 

13 14 15 16 17 18  0 

91 92 93 94 95 96 97 
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The function y replic x replicates elements of x according to non-negatives numbers in y: 

 

      x<-1 8 9 3 2 1 7 

      y<-1 1 4 3 2 0 3 

      y replic x 

1 8 9 9 9 9 3 3 3 2 2 7 7 7 

 

The function y nwise_sum x gives y-wise sum of vector x while y movin_sum x gives y-moving sum of vector 

x, the function y nwise_avg x gives y-wise average of vector x, the function y nwise_min x gives y-wise 

minimum of vector x while y movin_min x gives y-moving minimum of vector x.  We have y nwise_max x 

and y movin_max x similarly defined for maximum: 

 

      w 

14 76 46 54 22 5 68 94 39 52 

      3 nwise_sum w 

136 176 122 81 95 167 201 185 

      3 movin_sum w 

14 90 136 176 122 81 95 167 201 185 

      3 nwise_avg w 

45.33333333 58.66666667 40.66666667 27 31.66666667 55.66666667 67 61.66666667 

      3 movin_min w 

14 14 14 46 22 5 5 5 39 39 

      3 movin_max w 

14 76 76 76 54 54 68 94 94 94 

 

The function stddev is the standard deviation of a numeric vector, with w as above, we have 

 

      stddev w 

26.6608327 

 

Studying the code in the script file standard.esf (most functions are defined in short function form) helps one 

who is new to ELI to learn how to program in ELI through one-line code as well as using control structures.  

One can also discover other pre-defined functions not sampled here.  We note that each of these functions has 

implicit requirement on its’ input(s).  For example, avg and median only apply to numeric vectors while 

lower,upper and substr only apply to character vectors.  det clearly only takes only numeric matrix 

argument. 
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5.  Dictionaries and Tables 

5.1 dictionaries and enumerations 

A dictionary D is a two items list, a domain d and a range r of equal count, (d;r), and a correspondence 

between them set up by the dyadic function map :, D<-d:r.  Once that a dictionary is set, a pair of system 

functions will return its components: key(D) gives d, the domain, and value(D) the range of D.  The domain 

d must be a simple list of unique elements such as a vector of symbols, characters or integers with no duplicates, 

the range r is a list of the same count as that of d whose items can be scalar, array or list of any type.  Elements 

in d are called keys; for each key k in d the lookup function D[k] will yields the corresponding item, which can 

be a scalar, an array or a list in r as the result.  Note that we assume []IO=0 in this chapter and the next.  For 

example 

 

      tD<-`nodeid `parent`lson `rson: 0 _1 1 2 

      tD 

nodeid| 0 

parent| _1 

lson  | 1 

rson  | 2 

      C<-‘ABC’:((`usd;1;’USA’); (`pound;0.66;’Britain’);(`yuan;6.27;’China’))  

      M<-1 10 20:(‘Washington’;’Hamilton’;’Jackson’) 

      M 

1 | Washington 

10| Hamilton 

20| Jackson 

      key(tD) 

`nodeid `parent`lson `rson 

      value(tD) 

_1 0 1 2 

      key(C) 

ABC 

      value(C) 

<<`usd 

 <1 

 <USA 

<<`pound 

 <0.66 

 <Britain 

<<`yuan 

 <6.27 

 <China 

      value(M) 

<Washington 

<Hamilton 

<Jackson 

      tD[`nodeid] 

0 

      C[‘A’] 

<`usd 

<1 

<‘USA’ 

      C[‘AC’] 

<<`usd 

 <1 

 <‘USA’ 

<<`yuan 
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 <6.27 

 <‘China’ 

      M[10] 

Hamilton 

 

Hence, dictionary is a generalization of list, instead of indexing by position 0..n, they are indexed by keys in 

their domains.  Moreover, for a k not in key(D), D[k] results in an unknown represented by `0N, not an 

error. 

 

      M[100] 

`0N  

 

As for lists, for key k in a dictionary D, D[k] can be indexed assigned, i.e. its corresponding value can be 

updated if k is in key(D) or inserted if k is not in key(D) to start with 

 

      tD[`rson]<-4 

  

As an array can be indexed by a subset of positions to get a sub-array, a dictionary can be indexed by a subset of 

its domain to get a sub-dictionary with corresponding sub-range: C[‘BC’] is the dictionary 

 

       ‘BC’:((`pound;0.66;’Britain’);(`yuan;6.67;’China’)) 

      

However, when that subset is a singleton s we need to enlist it to get a sub-dictionary with count 1 for both its 

domain and range 

 

      C1<-C[<.’A’]  is the same as  C1<-(<.’A’):<(`usd;1;’USA’) 
 

Since dictionary is a generalization of list that instead of a map from an integer interval !n to L it is a map from 

a general discrete set, the shape #d of a dictionary d is defined as #key(d)or #value(d).  

 

Two dictionaries D1 and D2 can be joined: D1,D2. key(D1,D2) is the union of key(D1) and key(D2) which 

must be of the same type.  If k is only in the domain of one dictionary then the corresponding value of k in 

D1,D2 is the corresponding value of k in that dictionary.  If k is in both domain, then the corresponding value 

of k in D1,D2 is that of D2, the right operand of the join. 

 

If the ranges of dictionaries D1 and D2 are numeric and are conformable, then each of f, D1 f” D2 is defined for 

a primitive dyadic arithmetic, logical or relational function f just as that for lists with elements belong to the 

common range of D1 and D2, and this is the same if one of Di is a numeric scalar.  For a primitive monadic 

function g, g”D1 is similarly defined; by convention, we drop ” from f” for dictionaries.  

 

      tD1<-`nodeid `parent`lson `rson: 1 0 3 4 

      tD+tD1 

nodeid| 1 

parent| _1 

lson  | 4 

rson  | 6 

      tD1+10 

nodeid| 11 

parent| 10 

lson  | 13 

rson  | 14 

 

We can drop keys ks and their corresponding values from a dictionary D, ks!.D;  `parent`lson!.T results in 

a new dictionary (this feature is missing at present) 
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      ̀ nodeid `rson: 0 2 

       

If some element k0 in ks is not in key(D), it would have no effect to the result.     

 

A dictionary D whose domain key(D) consists of symbols and whose range value(D) is a list whose elements 

are equal length vectors (some of them can be a scalar or a character matrix with the number of rows matches 

that length) is called a column dictionary.  Suppose k is a key, then D[k] is a vector, and we can index it by i 

to get its i-th element, D[k][i], or as in a matrix D[k;i] (later we also access this element by D.k[i]).  An 

example of column dictionary is the following: 

 

      tDc<-`nodeid `parent`lson `rson:val<-0 _1 1 2+"<.!5 

      tDc 

nodeid| 1 2 3 4 5 

parent| 0 1 2 3 4 

lson  | 2 3 4 5 6 

rson  | 3 4 5 6 7 

 

There is an incarnation of the map function : when the left operand is the name (symbol denoting a name) of a 

variable u whose value is a vector of unique items of symbol type and the right operand v is a scalar or vector of 

symbols all belong to the set represented by u which results in an enumeration instead of a dictionary 

 

      env<-`u:v 

 

(recall that for lop:rop to be a dictionary lop must be a vector or a list while `u here is a scalar). With a fixed 

u, the (monadic) function `u: is called an enumeration by u, u is the domain of enumeration and `u:v is called 

the enumerated value over u (we assume []IO=0 in this section).   

 

      u<-`ibm `hp `appl 

      v<-`ibm `ibm `appl `hp `ibm `hp `appl `hp `ibm `appl `hp `ibm `appl `hp `ibm `ibm 

      ev<-`u:v 

`u:`ibm `ibm `appl `hp `ibm `hp `appl `hp `ibm `appl `hp `ibm `appl `hp `ibm `ibm 

      v[2] 

`appl 

      ev[2] 

`u:`appl 

 

The reason to have enumeration instead of just store the variable v is that to operate on each item of v we need 

to check each symbol in v globally; with `u: we only need to check each item in v against those in u.  For an 

enumerated variable the values is actually stored as an index vector of u 

 

      0 0 2 1 0 1 2 1 0 2 1 0 2 1 0 0 

 

We can change an item in v and the corresponding ev would be changed as well; index of and where functions 

give the same results on v and ev. 

 

      v[2]<-`hp 

      ev[2] 

`u:`hp   

      v!`hp 

2 

      ev!`hp 

2 

      ?v=`ibm 

0 4 8 11 12 
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      ?ev=`ibm 

0 4 8 11 12 

 

Updating an enumeration makes change to some base symbol in u automatically forces corresponding changes 

in v. 

 

      u[1]<-`ge 

      ev 

`u: `ibm `ibm `appl `ge `ibm `ge `appl `ge `ibm `appl `ge `ibm `appl `ge `ibm `ibm 

      v 

`ibm `ibm `appl `ge `ibm `ge `appl `ge `ibm `appl `ge `ibm `appl `ge `ibm `ibm 

 

Without enumeration to affect the same change in v, we need to do 

 

      v[?v=`hp]<-`ge 

      v 

`ibm `ibm `appl `ge `ibm `ge `appl `ge `ibm `appl `ge `ibm `appl `ge `ibm `ibm 

 

On the other hand, to append an enumeration requires bit more work than just append an item to v. 

 

      v<-v,`gm 

      v 

`ibm `ibm `appl `ge `ibm `ge `appl `ge `ibm `appl `ge `ibm `appl `ge `ibm `ibm `gm 

      ev<-ev,`gm 

type error 

  

What happened is that `gm is not a member of u; so we need to do  

 

      u<-u,`gm 

      ev<-ev,`gm 

      ev 

`u:`ibm `ibm `appl `ge `ibm `ge `appl `ge `ibm `appl `ge `ibm `appl `ge `ibm `ibm `gm 

 

To recover v from its enumerated value, simply apply the value function as in the case of dictionary 

 

      value ev 

`ibm `ibm `appl `ge `ibm `ge `appl `ge `ibm `appl `ge `ibm `appl `ge `ibm `ibm `gm 

 

Finally we note that enumeration `u:v still works as above if u is relaxed to be a variable of distinct values of a 

types different from the symbol type. 

 

5.2 tables  

The transpose of a column dictionary D defined as `k0 `k1…`kn:(v0;v1;…;vn) is called a table T<-&.D, 

under the hook T is still stored as D with a mark for output purpose.  We can also set up a table directly by 

 

      T<-([] k0<-v0;k1<-v2;…;kn<-vn) 

 

where k0,k1,…,kn are symbols and v0,v1,…,vn are vectors (some of them can be a scalar); the value 

columns v0,v1,…,vn can be stored in variables c1,c1,…,cn first.  Then we can define T as 

 

      T<-([] c0;c1;…cn) 

 

ki is simply the symbol of the variable name of ci, i=0,1,…,n.  Let D be the dictionary 

 

      D<-`ticker `price:(`ibm `hp `appl;207.2 16.8 457.01) 
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      D 

ticker| ibm hp appl 

price | 207.2 16.8 457.01  

      &.D 

ticker price  

------------- 

ibm    207.2  

hp     16.8   

appl   457.01 

 

and T the transpose of D, then T can also be defined as a table directly as follows:  

 

      T<-([] ticker<-`ibm `hp `appl; price<-207.2 16.8 457.01) 

      T 

ticker price  

------------- 

ibm    207.2  

hp     16.8   

appl   457.01 

 

Note that with ‘(‘ followed immediately by ‘[‘ it signifies the definition of a table so ‘[]’ is not the quad for 

output and T is not a mere list but a table.  In case we have done 

 

      c0<-`ibm `hp `appl 

      c1<- 207.2 16.8 457.01    

 

first, we can define a table as follows  

 

      T0<-([] c0;c1) 

      T0 

c0   c1     

----------- 

ibm  207.2  

hp   16.8   

appl 457.01 

 

then the column variable names will be used as symbol names for columns. 

 

Records in a table can be accessed like in a list, and column names can be used as indices in a 2-dimensional 

array; and their values can be updated:  

 

      T[;`ticker]  

`ibm `hp `appl 

      T[2;] 

ticker | `appl 

price  | 457.01 

      T[2;`price] 

457.01  

      T[`price] 

207.2 16.8 457.01 

      T[`price]<-T[`price]+1 2 _3 

      T 

ticker price  

------------- 

ibm    208.2  

hp     18.8   

appl   454.01 
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We can also access column values of a table with dot notation commonly used in database systems; and access 

rows of table as a vector of records forming a table or a dictionary in case of a single row: 

 

      T.ticker 

`ibm `hp `appl 

      T[2] 

ticker| appl 

price | 457.01 

      T[0 1] 

ticker price 

------------ 

ibm    207.2 

hp     16.8 

 

Two tables with similar columns can be joined together by the cantenate primitive ‘,’: 

 

      T2<-&.`ticker `price:(`ibm `hp;198.8 20.1) 

      T2 

ticker price 

------------ 

ibm    198.8 

hp     20.1  

      T,T2 

ticker price  

------------- 

ibm    207.2  

hp     16.8   

appl   457.01 

ibm    198.8  

hp     20.1 

 

In particular, we can append a record to a table: 

 

      ̀ ticker `price:(`appl;468.3) 

ticker| appl 

price | 468.3 

      T,&.`ticker `price:(`appl;468.3) 

ticker price  

------------- 

ibm    207.2  

hp     16.8   

appl   457.01 

appl   468.3 

 

When at least one column is a vector, a column which is a scalar will be extended to match the lengths of others  

 

      T1<-([] c0;c2<-2013;c1) 

      T1 

c0   c2   c1 

------------ 

ibm  2013 207.2 

hp   2013  16.8 

appl 2013 457.01   

 

We also note that a character matrix can be used as a vector of rows in defining a column as long as the length of 

its first axis is the same as that of the other columns in the table: 

 

      compnam<-3 8#'Int BusMH P CompApple   ' 

      T1<-([] ticker<-`ibm `hp `appl;price<-207.2 16.8 457.01;name<-compnam) 

      T1 
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ticker price  name     

---------------------- 

ibm    207.2  Int BusM 

hp     16.8    H P Comp 

appl   457.01 Apple 

 

To retrieve column names of a table, Eli provides the function cols 

 

      cols T1 

`ticker `price `name 

 

The shape of a table T, #T, is defined to be the number of records in T 

 

      #T 

3 

 

We note that the transpose of a table results back into a column dictionary, i.e. &.T is D.   

 

5.3 primary keys and keyed tables 

In database systems, one typically designates a column, or a group of columns, in a table T to be the primary 

key of that table which usually uniquely identifies the records in that table T. That is, we have a smaller table Tk 

composed of the primary key column(s), and Tv, the table defined to be the rest of columns in T.  Then a keyed 

table T is defined as a mapping between these two tables: 

  
      Tk<-&.(<.`eqx):<.101 103 110  

      Tv<-&.`ticker `price:(`ibm `hp `appl; 207.2 16.8 457.01) 

      kT<-Tk:Tv 

      kT 

eqx| ticker price  

---|-------------- 

101| ibm    207.2  

103| hp     16.8   

110| appl   457.01 

 

For now we assume that the primary key is a single column.  In the first line above, it is necessary to enclose 

the single items both in the domain and value of Tk to create a dictionary.  To enter a keyed table directly as a 

table we do the following to achieve the same effect 

 

      kT<-([eqx<-101 103 110] ticker<-`ibm `hp `appl; price<-207.2 16.8 457.01)              

   

To access a record in the keyed table kT we provide indexing by a value from the table of keys, i.e. value from 

key column(s): 

 

      kT[103] 

ticker| hp 

price | 16.8 

 

To retrieve multiple records, it is a bit more elaborate as we can’t simply do 

      

      kT[101 110] 

length error 

 

We need to enclose each index as kT[(<.101),<.110] or more conveniently 

  

      kT[(101;110)] 
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ticker price  

------------- 

ibm    207.2  

appl   457.01  

 

Keyed table can also be updated as tables but the indices are from items of its primary key table: 

 

      kT[(101;110);`price] 

------------- 

ibm    207.2  

appl   457.01 

      kT[(101;110);`price]<-kT[(101;110);`price]*1.03 

      kT 

eqx| ticker price    

---|---------------- 

101| ibm    213.416  

103| hp     16.8     

110| appl   470.7203 

   

We also note that positional indexing for non-keyed table such as kT[1] no longer works here unless 1 happens 

to be a key column value. Since a keyed table is a dictionary like mapping, the functions key and value apply 

to it:  

 

      key kT 

eqx 

--- 

101 

103 

110 

      value kT   //kT before update 

ticker price  

------------- 

ibm    207.2  

hp     16.8   

appl   457.01 

 

If we already have an ordinary table which has a column of unique values, the function xkey with the table as 

the right argument and the intended key column name as the left argument converts it into a keyed table (note: if 

[] is missing, it would result in a list, not a table): 

 

      T0<-([] eqx<-101 103 110; ticker<-`ibm `hp `appl; price<-207.2 16.8 457.01)  

      T0 

eqx ticker price  

----------------- 

101 ibm    207.2  

103 hp     16.8   

110 appl   457.01 

      ̀ eqx xkey T0 

eqx| ticker price  

---|-------------- 

101| ibm    207.2  

103| hp     16.8   

110| appl   457.01    

 

And a keyed table can be converted to an ordinary table by supplying an empty left argument to xkey: 

 

       () xkey kT 

eqx ticker price  

----------------- 

101 ibm    207.2  
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103 hp     16.8   

110 appl   457.01 

 

All these operations will leave the original table unchanged.   

 

In a situation when only combinations of several columns uniquely determine a record in a table T, T is said to 

have a compound primary key, i.e. a primary key consists of several columns.  Since a keyed table is a 

mapping between two tables, this just makes the domain table to have more than one column: 

 

      k2T<-([eqx<-101 101 110;city<-`ny ̀ ln ̀ ny] ticker<-`ibm ̀ bp ̀ appl; price<-207.2 16.8 457.01)              

      k2T 

eqx city| ticker price  

--------|-------------- 

101 ny  | ibm    207.2  

101 ln  | bp     16.8   

110 ny  | appl   457.01  

 

To retrieve record(s) from k2T, we do 

 

      k2T[<.(101;`ny)] 

ticker| ibm 

price | 207.2 

      k2T[((101;`ny);(101;`ln))] 

ticker price 

------------ 

ibm    207.2 

bp     16.8 

   

Notice that in forming list items for retrieving record(s) the order of values must be in the same order as the 

order of key columns in the definition of the compound keyed table.  Given record(s) in the value portion of a 

keyed table, we can also do reverse lookup of their indices in the key column(s). 

 

      kT!(<.(`ibm;207.2)),<.(`appl;457.01) 

eqx 

--- 

101 

110 

 

To get the column name(s) of a keyed table, we apply the keys function 

 

      keys kT 

`eqx 

      keys k2T 

`eqx `city 

 

5.4 foreign keys and virtual columns 

The construct of an enumeration `u: of a variable u of unique symbols over a variable v with values belong to u 

at the end of sect.5.1 can be extended to that of a table pT with a primary key column p as domain and entries in 

a column of another table T, whose values all belong to that of p, as its range; this is denoted as `pT:.  

Therefore, we define a foreign key column in a table as an enumerated value over a keyed table.  

 

      pT<-([cux<-1 3 5 8] sex<-'fmmf';age<-35 18 51 45) 

      pT 

cux| sex age 

---|-------- 



 

66 
 

1  | f   35  

3  | m   18  

5  | m   51  

8  | f   45 

      sales<-([] mech<-`p1 `p2 `p3 `p4 `p5 `p2;amt<-2.3 1.2 5 20.1 50.7 11;cust<-`pT:3 5 1 5 8 3)  

      sales 

mech amt  cust 

-------------- 

p1   2.3  3    

p2   1.2  5    

p3    5    1    

p4  20.1  5    

p5   50.7 4    

p2   11    5 

 

A foreign key establish a relation between the enumeration domain table kt and the enumerated value table dt, 

i.e. it has a column fk<-`kt:…, then the values of a column c0 in kt can be accessed via fk with the dot 

notation dt.fk.c0 from dt, and this is called a virtual column.  

 

      sales.cust.age 

18 51 35 51 45 18 

 

There is a function meta which gives the meta data of a table indicating the types of a column (sect.4.2) and 

which column is a foreign key. 

 

      meta pT 

c  | t f a 

---|------ 

cux| I     

sex| C     

age| I     

      meta sales 

c   | t f  a 

----|------- 

mech| S      

amt | E      

cust| I pT 

 

At times one would like to get actual values instead of the enumerated values, to do that simply apply the value 

function 

 

      sales.cust 

`pT:3 5 1 5 8 3 

      value sales.cust 

3 5 1 5 8 3   

 

A built-in function fkeys applying to a table return a dictionary whose domain is the set of foreign keys of the 

table and whose value consists of the primary key table names: 

 

      fkeys sales 

cust| pT 

 

As in ordinary vector v, the index of function v!a gives the position of a in v, for a table t and a record b , the 

reverse lookup function t!b gives the position(s) of record(s) b in table t. 

 

      kTe<-([]eqx<-101 103 110 102 108; ticker<-`ibm ̀ hp ̀ appl ̀ ge ̀ gm; price<-207.2 16.8 457.1 23 

11.2)  

      kTe 
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eqx ticker price 

---------------- 

101 ibm    207.2 

103 hp     16.8  

110 appl   457.1 

102 ge     23    

108 gm     11.2  

      kTe!(110;`appl;457.1) 

2 

      kTe!((108;`gm;11.2);(110;`appl;457.1)) 

4 2



 

68 
 

 

6.  Queries: esql 

6.1 create, load and insert statements 

ELI provides a small set of query statements, esql, which looks very similar to the standard SQL statements for 

traditional relational database management systems.  Its functionality covers the basics of q-sql in the kdb 

database system (see www.kx.com) but it does not have the completeness of q-sql at present.  Hence, while not 

every SQL statement has a ready counterpart in esql, some esql statements can be more powerful than their 

corresponding SQL statements.   

 

One prepares an esql statement as a text string, and then executes that string by applying the reserved function 

do to it (one should check that standard.esf from ELI distribution is in ws subdirectory): 

 

            do txt  

     

The create statement is of the following form: 

 

            CREATE TABLE tbl (fields;types;width) 

 

where tbl is the name of the empty table to be created, fields is a list of column names separate by blanks, 

types is a character string indicating the types of column values (I for integer, C for character, S for symbols 

and D for date-time) and width is a vector of integers indicating the width of character valued columns and 

may be empty if there is no column of character type while the number of columns and that of types must be 

equal.  Note that the corresponding order is maintained between these three parameters. 

 

      do stm10c<-'CREATE TABLE t1 (a b c d e f;''SICEIC'';8 1)' 

table t1 created. 

      t1 

a b c d e f 

----------- 

 

The load statement is of the following form: 

 

            LOAD TABLE tbl (fld1s<-val1;…; fldn<-valn) 

 

where tbl is the name of the table to be loaded, fldi is the i-th column name and vali is the i-th column value, 

i=1..n.   

 

      w1 

`r `r1 `r2 `s1 `s1 

      w2 

30 90 100 114 210 

      do 'LOAD TABLE T1 (a<-w1;b<-w2)' 

table T1 loaded. 

      T1 

a  b   

------ 

r  30  

r1 90  

r2 100 

s1 114 

s1 210 
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The insert statement is of the following form: 

 

             INSERT INTO tbl (val1;…; valn) 

 

where tbl is the name of the target table of insert, vali is the value, i=1..n, to be inserted to the i-th column of 

tbl. Of course, each vali must be compatible with the existing values in that column, i.e. of the same type and 

in case of character type, of the same width; vali can be all scalars (with character columns being vectors), or 

vectors of the same length (with character columns being matrices having length of the first dimension equal to 

the length of other vectors).  For example, 

 

      do 'INSERT INTO T1 (`r1 `s2 `s3;50 64 88)' 

new value inserted into table T1. 

      T1 

a  b   

------ 

r  30  

r1 90  

r2 100 

s1 114 

s1 210 

r1 50  

s2 64  

s3 88   

 

We note that this statement inserted 3 records into table T1.  Also, we can set/load a table as we did in the 

previous chapter without using create or load statement of esql.  

 

6.2 select, exec and update* statements 

The select statement is of the most used query in any database system and it is of the following form: 

 
          SELECT [fields] [BY group] FROM tbl [WHERE wherespe] 

 

where each expression inside [...] is optional, tbl is the name of the table we are selecting data from; fields 

selects the columns of tbl while wherespe selects which rows of records in tbl to be included in the final 

result. The WHERE clause is processed first, if it is absent then all rows of tbl are selected; similarly, if fields 

is empty then all columns are selected corresponding to the statement   

 
          SELECT * FROM tbl … 

 

in SQL.  wherespe is of the following form:  

 
        constraint [,constraint1[, constraint2,.. ]] 
  

i.e. it is one or several constraints separated by a ‘,’; each constraint is of the form  

 
        lop cfn rop 
 

where either lop or rop is a column name while the other then must be a literal constant, cfn is one of the 

comparison functions such as ‘=’ or ‘<’ in Eli or ‘IN’ (stands for the membership function ‘?’ in Eli).  The 

presence of multiple constraints means a nested where, i.e. all constraints are and together.   

 

fields is of the form:  



 

70 
 

 
         columnexp [,columnexp1[,columnexp2,.. ]] 

 

i.e. it is one or several columnexps separated by a ‘,’; each columnexp is of the form  

 
              [newnam <-[agrfn]] colnam  
 

where colnam is the name of the source column in tbl, which can possibly be a virtual column if tbl has a 

foreign key, and newnam is the name giving to the resulting column in the output table; agrfn is the name of an 

aggregate function, in case the BY group clause is present. The possible aggregate function names are: SUM, 

COUNT, MAX, MIN, FIRST with the usual meanings of the indicated function applying to each group yielding a 

scalar value.   

 

The meaning of BY group clause is similar to that of GROUP BY in SQL, it groups records by their value 

specified in group which is of the form:  

 
             [newnam <-] colnam 
 

where colnam is the source column whose value is used to group records and newnam is the name of the 

resulting column.  We give several examples of the select statement here:  

 
      do 'SELECT FROM T1 WHERE b<100, a IN `r `r1 `s2' 

a  b  

----- 

r  30 

r1 90 

r1 50 

s2 64 

SELECT successful. 

      T<-([] n<-`x `y `x `z `z `y; p<-0 15 12 20 25 14) 

      T 

n p  

---- 

x 0  

y 15 

x 12 

z 20 

z 25 

y 14 

      do ‘SELECT m<-MAX p,s<-SUM p BY name<-n FROM T’ 

name| m  s  

----|------ 

x   | 12 12 

y   | 15 29 

z   | 25 45 

SELECT successful. 

 

The exec statement is of the same format as that of the select statement.  Instead of returning a table as in the 

case of the select statement, the exec statement returns a dictionary corresponding to the table for the alike select 

statement; and in case of a one-dimensional table, it just returns the column values.     

 
               EXEC [fields] [BY group] FROM tbl [WHERE wherespe] 
 

For example,  

 
      do 'EXEC n FROM T' 

`x `y `x `z `z `y 
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EXEC successful. 

      do 'EXEC n,p FROM T' 

n| x y x z z y 

p| 0 15 12 20 25 14 

EXEC successful. 

 

Using the exec statement offers the advantage of directly utilizing a returned value into an Eli program for 

further processing.  This is in sharp contrast to the situation in ordinary database systems where one need to 

fetch data from a RDMS selected by a group of SQL statements to be further processed by another programming 

language such as Perl or Python.  More than conceptual simplicity in programming, this integration greatly 

improves processing efficiency.   

 

The update statement* is of the same format as that of the select statement (*at present it is not well 

implemented) but with fields being replaced by updfields which is a group of one or several updf 

separated by ‘,’ and each updf is of the form colnam<-expr where colnam is the name of a source column 

whose value is going to be replaced by expr: 

 
          UPDATE [updfields] [BY group] FROM tbl [WHERE wherespe]    
 

6.3 query examples against a database 

We shall illustrate the use of esql by running query examples against a sample database of a store.  Assume we 

have already have standand.esf file in ws; then after issuing )fload store2 (which is included in the ws 

directory of eli distribution) to bring in the data, we see the following lines to build a database of four tables 

directly (set []IO=0): 

 
      tc<-^.#na 

      ts<-^.#mn 

      te<-^.#en 

      customer<-([cux<-!tc] name<-na;sex<-se;age<-ag;addr<-ad;cardn<-cn) 

      stock<-([stx<-!ts] m_name<-mn;in_stk<-in;uni_prc<-up) 

      employee<-([empx<-!te] e_name<-en;e_age<-ea;e_phone<-ep) 

sales<-([salx<-sa]cust<-`customer:cu;stk<-`stock:it;amount<-am;payment<-py; 

dat_time<-dt;empl<-`employee:sp)  

 

One can type  

 
      do 'SELECT FROM sales' 

 

to see the content of the table sales or any other tables similarly.  sales is the main table with salx as its 

primary key and cust,stk,empl are foreign keys pointing to tables customer,stock,employee respectively.  

m_name is the name of a merchandize in store and in_stk indicating it is in stock.  We see several esql 

statements and their resulting tables here while the meaning of each is self-explanatory as it is the same as in a 

corresponding standard SQL statement. 

 

      do 'SELECT dat_time FROM sales WHERE 25 > cust.age' 

dat_time                

----------------------- 

2012.05.25T09:50:21.000 

2012.05.25T10:37:03.000 

2012.05.25T11:56:45.000 

2012.05.25T12:00:22.000 

2012.05.25T13:17:04.000 

2012.05.25T13:23:41.000 
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2012.05.25T15:30:05.000 

SELECT successful. 

      do 'SELECT yng_sal<-amount, dat_time FROM sales WHERE 25 > cust.age'  

yng_sal dat_time                

------------------------------- 

7.1     2012.05.25T09:50:21.000 

45      2012.05.25T10:37:03.000 

23.5    2012.05.25T11:56:45.000 

28.5    2012.05.25T12:00:22.000 

51.2    2012.05.25T13:17:04.000 

23.1    2012.05.25T13:23:41.000 

26.5    2012.05.25T15:30:05.000 

SELECT successful. 

      do 'SELECT amount,dat_time FROM sales WHERE 50>amount, stk.m_name IN `hammer`screw`tape' 

amount dat_time                

------------------------------ 

36.5   2012.05.25T10:13:42.000 

28.5   2012.05.25T12:00:22.000 

18.5   2012.05.25T13:43:25.000 

30.2   2012.05.26T12:43:46.000 

23.1   2012.05.25T13:23:41.000 

39     2012.05.25T14:10:23.000 

26.5   2012.05.25T15:30:05.000 

48.2   2012.05.26T14:30:26.000 

17.5   2012.05.25T15:33:42.000 

SELECT successful. 

      do 'SELECT FROM sales WHERE 50 < amount,cust.sex=''f'''     

salx cust stk amount payment dat_time                empl 

--------------------------------------------------------- 

4    1    2   68.2   cr      2012.05.25T11:30:24.000 1    

7    3    1   92.5   cr      2012.05.26T16:10:27.000 0    

8    3    2   62.4   cr      2012.05.26T17:23:48.000 0    

11   3    0   57     cr      2012.05.25T12:23:43.000 2    

20   3    3   74.2   cr      2012.05.25T15:03:44.000 2    

23   5    4   82.5   cr      2012.05.26T19:43:47.000 3    

24   5    5   61.4   cr      2012.05.26T20:57:08.000 3    

27   5    3   61     cr      2012.05.25T15:57:03.000 5    

31   6    4   77.5   cr      2012.05.26T21:30:27.000 3    

SELECT successful. 

      do 'SELECT gender<-FIRST cust.sex, total<-SUM amount BY purchase<-cust.cux FROM sales' 

purchase| gender total 

--------|------------- 

0        | m      30.6  

1        | f      138.3 

2        | m      174.3 

3        | f      398.4 

4        | m      296.8 

5        | f      253.1 

6        | f      150.1 

SELECT successful. 
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