A Primer for ELI a system for programming with arrays

by Wai-Mee Ching

with assistance of Hanfeng Chen
revised
2012-11-28,2013-1-28,4-10,6-23,11-26,2015-3-25,8-9,10-24,11-25,2016-3-3,6-3,7-21,11-29 2020-6-4
© Copyrighted 2011
Preface 1

1. Arrays, Primitive Functions and Operators 2
1.1 getting started 2
1.2 data types, variables, shape, reshape and count 4
1.3 indexing and indexed assignment 8
1.4 arithmetic and circle functions 11
1.5 relational and logical functions 14
1.6 operators and their derived functions 15
1.7 member of, index of, where, compress, expand and unique 20
1.8 structural transformations of arrays 23
1.9 encode, decode, sort and short functions 27
1.10 execute, format and other mixed functions 30
2. Lists and related Operations 33
2.1 lists, enclose, raze and match 33
2.2 partition, partition count and grouping. 35
2.3 the each operator 37
2.4 temporal data 40
3. Defined Functions and Sequence Control 42
3.1 defined functions and evaluating one line 42
3.2 one line examples 44
3.3 transfer of control by branching and stopping 46
3.4 control structures 46
3.5 recursive functions 49
4. System Facilities 50
4.1 save and reload your work* 50
4.2 loading and copying script files 51
4.3 input and output 52
4.4 pre-defined functions in the standard script 55
4.5 the pattern matching function like 58
5. Dictionaries and Tables 60
5.1 dictionaries and enumerations 60
5.2 tables 63
5.3 primary keys and keyed tables 66
5.4 foreign keys and virtual columns 68
6. Queries: esql. 70
6.1 create, load and insert statements 70
6.2 select, exec and update* statements 71
6.3 query examples against two databases 73
References 77

Preface

ELI is an array programming language system derived from APL but uses ACSII characters for easy communication. ELI has almost all functionalities of ISO APL [1], i.e. all flat array operations, but it also has features not prescribed in [1] such as complex number, symbol, temporal data, list, dictionary, table, esql, control structures and scripting files. We kept ELI simple since we want to make a clean and succinct way of doing array computing, unburdened by the legacy of FORTRAN, accessible to the general public. We make such a tool freely available to let more people appreciate the fact that simplicity of rules and notation in a programming language leads to greater programming productivity.

The Primer is short; it is neither a tutorial nor a reference manual but does cover most material in the current ELI system. A careful reading of this Primer should enable a newcomer to get sufficiently familiar with ELI to start using it. Thus, anyone with basic mathematics background can quickly pick up ELI to explore programming with arrays.

Currently, ELI is available on Microsoft Windows platform as well as on Linux and Mac OS. The directory structures are different in Windows and Linux/Mac OS. On Windows, under the directory eli, there are two subdirectories bin (which contains the eli.exe and documents) and ws (which contains workspaces and script files). On Linux/Mac OS these two are merged into one directory elix/elim. The user interface under Windows, Linux and Mac is through an ELI window under ELI Studio in release version 0.3 of ELI; previously it was line based for Linux/Mac.

The project started around 2000 [2] but was dormant for almost a decade; during 2009-2012 ELI has been revived with new features such as lists, complex numbers and temporal data, and made publicly available in 2011 (current site: http://fastarray.appspot.com/). In 2013, we added dictionaries and tables as well as esql. Both developers reside in North America since the fall of 2012. We welcome suggestions and comments from users around the world to further improve ELI.

1. Arrays, Primitive Functions and Operators

1.1 getting started

You get an ELI executable, eli.exe, either through an e-mail or download from the web. You put eli.exe on your desktop or some directory in my document. Click on eli.exe icon and you see

```
ELI version 0.3 (C) Rapidsoft
    CLEAR WS
```

You type (the lines displayed with an indentation), and you see the system responses with a line:

! 10

```
12345678910
```

 \(100+\) ! 10
 101102103104105106107108109110
v<-100+! 10
v
101102103104105106107108109110
w<-2*v
w
202204206208210212214216218220
$2 * 100+!10$
202204206208210212214216218220
w+v
303306309312315318321324327330
$v+w<-2 * v<-100+!10$
303306309312315318321324327330

First, ! is a function which, when applied to n generates a vector from 1 to n .100 is then added to each element in that vector. This vector can then be assigned to a variable v , and after multiplying by 2 we store the value in another variable w , whose value can also be generated by the line below (in that line + is done before * because + is to the right of $*$). We see here two basic principles in ELI:
i) a line executes from right to left and all functions have equal precedence;
ii) for an arithmetic function $f, A f B$ works if either one of the operands is a single or both are of equal shape (length).

Rule i) also applies to defined functions, and ii) extends to scalar functions and arrays. ELI provides 65+ primitive functions. They are neither library functions nor are they represented by mnemonics. Rather, they are denoted by special symbols consist of one or two ASCII characters. For a two-character symbol, no blank is allowed in between; such a symbol either ends in a '.' or the combination carries clear meaning. A function symbol can denote either a monadic (i.e. has only a right operand) or a dyadic (has left and right operands) function depending on its context as shown in the following table.

ELI system is either in interpreter mode or in function edit mode. From here on we assume the system is in interpreter mode, i.e. ELI interprets line by line of entered code. We'll explain the function edit mode later when we introduce defined functions. ELI provides a limited compiler which translates ELI into C code (see [compiler] tab on the ELI site).

Table of special symbols and the functions/operators they represent monadic function symbol name dyadic function

type	: column	map/enumeration
unique	$=$ equal	equal
negate	- minus	subtract
ravel	, comma	catenate/laminate
raze	, comma dot	catenate on1staxis
pi	0 at	circle functions
	a. del	
where	? epsilon	

roll
signum
exponential
reciprocal
natural logarithm
absolute value
factorial
shape
matrix inverse
reverse
reverse along $1^{\text {st }}$ axis
grade_up
enclose
grade_down
grouping
conjugate
format
interval
execute
count
first
transpose
floor
not
ceiling
partition_count
reduce
reduce along $1^{\text {st }}$ axis
scan
scan along $1^{\text {st }}$ axis
. dot
" each
me
: column map/enumeration

- equal
subtract
,. comma dot catenate on ${ }^{\text {st }}$ axis
o at circle functions
? epsilon member
?. random deal
* star multiply
* power power
\% percent divide
\%. log general logarithm
| bar residue
|. gamma binomial
\# rho reshape
\#. domino matrix divide
\$ turn rotate
\$. turn dot rotate on $1^{\text {st }}$ axis
< left less
<. pack encode
> right greater
>. unpack decode
+ plus add
+. format special format
! iota
index of
!. exclaimation drop
\wedge cup and
^. cup dot take
\& ampersand or
\&. flip general transpose
_ high_minus
match
~. upper maximum
|| double bar partition
~= not equal
>= greater or equal
<= Less or equal
/ slash compress
/. slashdot compresson1 ${ }^{\text {st }}$ axis
\backslash backslash expand
\. backslashdot expand on $1^{\text {st }}$ axis assign
<<
->
assign to file
// comment
[] quad
[) bare_quad

In the table, the names in the middle column are the names of the primitive symbol next to it. Some are without names because they denote one function only, and the name of that function is the name of that symbol. For each row, the left column is the name of the monadic function which it represents while the name in the rightmost column is the names of the dyadic function which it represents. We shall go through all of them later in this Primer. Since the primitive functions are represented by symbols composed of special characters, there is no reserved word in ELI other than 7 words for control structures which we'll introduce in the next chapter.

For a reader who is already familiar with APL, he can now go directly to sect. $\mathbf{1 . 1 1}$ on control structures and chapter 3 on system facilities other than note that there is a simple type symbol described in the next section. We remark that ELI has no nested arrays but it has lists to accommodate heterogeneous or non-rectangular data (see sect. 1.11).
// put everything to the right of it as a comment. To $\boldsymbol{\operatorname { l o g }}$ off from ELI, simply type
) off

1.2 data types, variables, shape, reshape and count

ELI deals with three types of data: numeric, character and symbol (we'll add temporal data later). A numeric data can be a boolean, an integer, a floating point number or a complex number. A boolean data is either 0 or 1 , which represents false or true value respectively and can result from a comparison

```
    2=2 3
10
or a logical operation on boolean data
```

 1101008010010
 110110
$110100^{\wedge} 010010$
010000
where \& is the or function and \wedge is the and function. Boolean data can participate in all arithmetic operations as integers. But there are primitive functions (we'll see later) whose left operand must be boolean.

Character data are entered by paired (single) quotes but displayed without quotes; and to put a ''' into a character string, write ${ }^{\prime}$ ':

A<- 'BC'
ch<-'abcde' '1234'
ch
abcde' 1234
A
BC
A+1
domain error
We see that A is a variable of character type, and apply addition to it results in a domain error, i.e. it is out of the domain where + is defined. If we do later,

$$
1+A<-10
$$

Now A takes a numeric value 10 and addition is ok. Hence, in ELI variables can be assigned values on the fly without first declaring their type (or dimensions), and can even change its type (even though it may not be a good idea to do so). But a variable must have been assigned a value before you can use it:
$n+1$
Error: value error
$n+1$

A data of symbol type is entered with a back-tick` followed by a character string (possibly empty) as \(a<-\) ' \(a b c\) a abc A character string that is allowed to form a symbol should not have blanks; and not all symbols are name-like as \(`+\) and $`>=$ are also legitimate symbols.

A name in an ELI workspace denotes either a variable or a user defined function. A name must start with a letter followed by alphanumeric characters plus the '_, character (but not as an ending character). There are also special names, i.e. names prefixed by a '_', reserved for system variables and system functions. As in Unix, names are case-sensitive. Clearly, there must be a blank between data, and between data and user function, i.e. numbers, character strings and names; but a blank is not required between a data item and a special symbol denoting a primitive function, or between symbols. So a-3 and a -3 are the same.

To see what variables or defined functions are in a workspace, you type the system commands

```
)vars
)fns
```

In a clear workspace, there is none. Numbers are written in decimal form

```
    121.20.51.0
```

121.20 .51

A floating point number involves a ' .' but it can't start or end with a '.'
.5
syntax error
Negative numbers are prefixed with '_'. Note that the monadic function '-' applies to each number to the right of it, and '_' is not a primitive function
-12.53 (same as 0-1 2.5 3)
_1 _2.5 _3
Note that ' \quad, is treated similar to a decimal point in a number, so it must be immediately followed by a digit (i.e. no blank is allowed between them). For scaling, both ' e ' and ' E ' are acceptable:
1.2 e 2

120
1.2E2

120
A complex number is of the form $R j I$, where R is the real part and I is the imaginary part, each written as an integer or a floating point number and there should be no space before or after j. For example the square root of $_1$ is
_1*.0.5

0j1
$2 j 5+3 j 2.5$
5j7.5
$2 j 5 * 3 j 2.5$
_6.5j20
Our discussion so far is on how to enter literal data, or assign a literal data to a variable. We call all literal data, variables and values resulted from the evaluation of expressions simply data. A data in ELI is either a scalar,
an array or a list. A scalar is a single number, a single character, a single symbol, a single temporal data, or a variable holding such a value. A one dimensional array is called a vector, a two dimensional array is called a matrix, and a scalar can be regarded as a 0 -dimensional array. There are higher dimensional arrays, and the dimension of an array is called its' rank. A vector is a rank 1 array, and a matrix is a rank 2 array and so on. The length of a vector is the number of elements in that vector, and a length 0 vector is called an empty vector. Surprisingly, there are empty arrays other than empty vector, i.e. one of its dimensions is 0 . For any data, we can apply the shape function \# to get its' shape, i.e. its' dimensions

```
sa<-#a<-1
sa
        (sa, the shape of a, is an empty vector)
#sa
    (its length is 0)
b<-1}308%891
#b
#'K'
    (again an empty vector)
##'K'
##b (b is of rank 1, i.e. a vector)
```

5

1
We can also create empty vector in two ways:

```
#!0
```

0
\#'
0
Up to this point we may just wonder: how do we input a matrix, and other higher dimensional arrays, into ELI console? First, let us try to input a 2 by 3 matrix:

```
    a<-9 23
    456
456
    a
923
```

We see that multi-line doesn't work as expected. To this end, we introduce the dyadic form of \#, the reshape function $S \# A$, where S must be a non-negative integer or vector while A can be any data:

```
    a<-2 3#9 2 3 4 5 6
```

 a
 923
456
\#a
23

What the dyadic \# (called rho) does is to put the right side operand into an array of shape specified by the left operand. The left operand must be a vector whose elements are all non-negative integers; but that vector can have just 1 element or more that 2 elements.

```
    7#'wy'
wywywyw
    a3<-2 3 4#!21
    a3
    1
    5
    9101112
13141516
```

```
17 18 19 20
21 1 2 3
    #a3
2 34
```

We see that in case the right operand does not have enough elements to fill up the required result array or vector, it would reuse its elements in turn. The shape of the result from a reshape always equals to the left operand of the reshape. Moreover, we can create empty vector and empty matrix by a reshape
\#empv<-0\#a
0
\#empm<-0 10\#'A'
010
An empty vector usually is used to initialize a list, and an empty matrix is typically used to initialize a table of a certain length (say 10 as in the above case).

There is a monadic function ',' called ravel acting like an inverse of reshape, which turns any data into a vector whose length is the product of the shape vector (the dimensions) of the operand array

```
    ,a
9 2 3456
    ,a3
2 3 4 5 6 7 8 9 10111213141516171819 20 21 1 2 3
    #,a3
2 4
    #av<-,a0<-8
1
```

We see that the ravel of a scalar turns it into a one-element vector, i.e. a vector of length 1 of the same value. Often they behave the same in computations, but there could be subtle differences as one is of rank 0 while the other is of rank 1 .

The dyadic function denoted by ',' is called catenate which glues two pieces of data together: for A and B both to be either scalar or vector, A, B just attach B to A.
$0,!10$
012345678910
(!10), _1
12345678910 _1
'WATCH OUT','!'
WATCH OUT!
'WATCH OUT', ' GUYS!'
WATCH OUT GUYS!
100200,235
100200235
We note that the difference between a character string (a vector) and a symbol (a scalar) here:

```
    #S<-'abc'
3
    #`abc
        (again an empty vector)
    #,`abc
1
    #s3<-`abc `ddl `comp
3
    2 2#s3
`abc `ddl
`comp `abc
```

For a vector v , the shape of v , \#v, gives the number of elements in v ; for a general array a , multiplying the elements in \#a, i.e. the product of the dimensions of a (*/\#a), gives the number of elements in a. There is a monadic primitive function count ${ }^{\wedge}$, for which ${ }^{\wedge} \mathrm{w}$ gives the number of elements in w , and for a scalar $\mathrm{w},{ }^{\wedge} \mathrm{w}$ is 1 (this saves us the need to ravel a scalar in cases for counting purposes). So we have,
^s
^`abc

1
ss3

4
^a3
24
We note that when entering a numeric vector a blank space is obviously needed between two neighboring numbers, but this is not needed in case of entering a vector of symbols:

```
    syms<-`a`b`c
    syms
`a `b `c
```


1.3 indexing and indexed assignment

Before we discuss indexing, let us revisit the monadic function $!n$ which gives a vector $1 \ldots n$. There is actually a system variable [] IO called index origin, which by default is 1 , but can be changed to 0 in a workspace.

CLEAR WS
[]IO
1
! 12
123456789101112
[]IO<-0
0
! 12
01234567891011
Indexing a vector or an array depends on []IO. For []IO=0, it operates like in C. For wholding
31 _7 91160 _2
w[0 4 7]
311 _2
w[8]
index error
[]IO<-1
1
w[8]
_2

ELI signals an index error if any one of the indices used is out of bound and that depends on []IO, i.e. each index must be an integer between []IO and (\#v)+[]IO-1 for any vector v . What inside [..] is called an index expression. Elements in an index expression need not to be distinct nor necessary to be a scalar or vector, it can be an array as long as each of its elements is within the bound specified above:

w[3\#4 7]

909
3\#4 7
474

909
090

The shape of the result from an indexing is the shape of the index expression, i.e.

$$
\text { \#v[I] } \leftarrow \rightarrow \text { \# }
$$

For matrices and high dimensional arrays, we can index into individual elements of an array, or we can get some of its sub-array by indexing certain slices.

```
    x
ABCD
EFGH
I JKL
    x[2;4]
H
    x[2 3;4]
HL
    x[2 3;1 4]
EH
IL
    x[;4]
DHL
    x[; ,4]
D
H
L
    x[1 2;]
ABCD
EFGH
```

where an empty expression before or after a ' $;$ ' indicates that all elements in the corresponding axis are to be taken. We also notice the difference between indexing by a scalar 4 and by a one element vector , 4 . The first results in a vector while the second results in a 3 by 1 matrix. In general, if A is a k-dimensional array, then

I $\leftrightarrow \rightarrow$ I1;I2; ...ik
is a valid index expression for A provided each $I j$ is either empty or is an integer expression whose value (or value of its elements in case of array) lies within ! (\#A) [j] ; each $I j$ is called a component of the index expression I, and the shape of

A[I]
is the Cartesian product of shapes of $I j$'s. For example,

$$
A<-234 \#!24
$$

A
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
$\begin{array}{llll}5 & 6 & 7 & 8\end{array}$
9101112

```
13}1415151
```

$\begin{array}{llll}17 & 18 & 19 & 20\end{array}$
21222324
$\mathrm{A}[1 ; 23 ; 124]$
$\begin{array}{lll}5 & 6 & 8\end{array}$
91012
$A\left[\begin{array}{llll}; 1 & 3 & 2 ; 2\end{array}\right]$
24
1012
68
1416
2224
1820

If one of the elements in $I j$ is not in $!(\# \mathrm{~A})[\mathrm{j}]$, the system responses with a index error message. If the number of '; is not equal to (\#\#A) -1 then we have a rank error

A[2;34]
Error: rank error
A[2;34]

We have already seen simple assignment
anv<-expression
where anv is a variable, which may or may not need to have appeared before, and expression is a line of code to the right of $<-$. ELI evaluates this line from right to left as we stated in the getting started sect. and put the resulting value into $a n v$; and that resulting value is also the result of the assignment. Hence, we can assign some (initial) value to a group of variables, A, B, C, ... all at once

```
A<-B<-C<-!0
```

and remember the equal precedence rule, which can be overwritten by parentheses

$$
3 * 2+1
$$

9
$(3 * 2)+1$
7

To set up a variable E with the same number of 0 s as the length of another vector v ,
E<-\#V\#0
would have E holding the value of v if v is an integer vector, but the following will do the intended
E<-(\#V)\#0

An indexed assignment

$A[I]<-B$
changes the values of certain elements of an existing array A, specified by the index expression I, for a new set of values denoted by B. For this to be a valid assignment, first I must be a valid index expression with respect to A as explained earlier in this section, and second, the shape of B must be the same as that of I or B is a scalar. The result of the indexed assignment is the replacement of the values of elements in A specified by I with the corresponding elements from B or the single scalar value B. In case there are duplicates in I, the later ones in B overwrite earlier ones.

```
    av<-!12
    av[2 3]<-12 13
1213
    av[2*!6]<-0
0
    av
10130507090110
    a3<-2 3 4#!21
    a3[1;2 3;3 4]<-2 2#!4
12
34
    a3
2 3 4
5
9 10 3 4
```

```
13141516
171819 20
21 1 2 
    a3[2;;1 3 4]<-1
1
    a3
234
6 1 2
9 10 3 4
1411
18 1 1
1 1 1 1
```

Indexed assignment is the only kind of assignment with expressions other than a variable name allowed on the left side of '<-' in ELI.

1.4 arithmetic and circle functions

A monadic primitive function f is called a scalar function if $f(s)$ is again a scalar for a scalar s, and that $f(A)$ has the same shape as that of A for an array A plus that any element $(f(A)) i j$ of the result equals to $f(A i j)$ (so ! and \# are not monadic scalar functions). A dyadic primitive function f is called a scalar function if $z f s$ is again a scalar for scalars z, s; otherwise for $B f A, A$ and B must be compatible, i.e. either one of them is a scalar or they must be of the same shape S, then $B f A$ is of shape S plus that any result element $(B f A) i j=B i j f A i j$, where either Bij or $A i j$ could be the reshape of a scalar.

Hence, the application of a scalar function to an array, or arrays, is a natural extension of its application to each (pair of) element(s) of the array(s). Thus, a scalar function preserves the shape of its operand(s). All arithmetic, logical and relational functions are scalar functions. Other functions are called mixed functions. Arithmetic functions operate on numbers while logical functions operate on boolean data. We have seen the addition + , subtraction - and multiplication * functions. The monadic form of * is the signum function:
$* 0$ is $0, * p$ is 1 for any number $p>0$, and $*_{n}$ is $_1$ for any number $n<0$.
Suppose v and P are the volumes and prices of a stock trades in the first minute of market opening, $\mathrm{PO}(=20)$ is the closing price of that stock in the previous day. To mark the volumes of up-trades positive and down-trades negative:

V
$\begin{array}{llllllll}86 & 25 & 55 & 48 & 78 & 95 & 36 & 36 \\ 14 & 65\end{array}$
P
17.322 .324 .317 .521 .418 .417 .21520 .821 .8
*P-P0<-20
_1 11 _1 1 _1 _1 _1 11
V**P-P0
_ 862555 _ 4878 _95 _36 _36 1465
The power function $L^{\star} . R$ raises the base to the R th power of L

```
    2 _3 100.525 *. 2
491000.25625
    10 *. _1 0123
0.11101001000
    2*.!10
2481632641282565121024
    \(491000.25625 * .0 .5\)
23100.525
```

We see that for a negative number $-p$ on the right $n^{\star} .-p$ is the inverse of $\left(n^{*} . p\right)$; and that $v^{\star} .0 .5$ is taking the square root of v.

The monadic form of *. is the mathematical exponential function.

```
    e<-*. }
    e
2.7182818
    *. _1 0 1 2 3
0.36787944 1 2.7182818 7.3890561 20.085537
    e*. _1 0 1 2 3
0.36787944 1 2.7182818 7.3890561 20.085537
```

We see that e above is the famous transcendental Euler's number \boldsymbol{e}, and that $* . v$ is just a convenient way to write $e^{*} . v$ for any numerical (scalar or array) v.

The divide function is denoted by \%
(!6) \% 2
0.511 .522 .53
24% ! 6
2412864.84

The monadic form of $\%$ is the reciprocal function; $\% \mathrm{v}$ is simply $1 \% \mathrm{v}$.
$\%!6$
10.50 .333333330 .250 .20 .16666667

Now to take the cubic root of numbers or various roots of a number, we do

128100081125 *. \% 3
11.2599212104 .32674875

1024*.\%123510
10243210.07936842

The next pair of arithmetic functions is the \log functions \%. for dyadic B\%. L, it is the B based \log of L , and the monadic \%. L is the natural logarithm function, i.e. the same as the dyadic one with в fixed to be e. So, \%. is the inverse function of *. just like $\%$ is the inverse function of * .

```
    10%. 1 10 100 1000 10000
012234
    10%. 1 101001000 10000 100000
012345
    2%.0.5124816
_101234
    2 3 10%.4 9 100
222
    e<-*.1
    e
2.718282
    %.1 10 100 1000 10000 100000
0 2.302585 4.60517 6.907755 9.21034 11.512925
    e%.1 10 100 1000 10000 100000
0 2.302585 4.60517 6.907755 9.21034 11.512925
```

The monadic I is the absolute value function, i.e. $\mid \mathrm{p}$ equal to p if $\mathrm{p}>0$ or $=0$, and $\mid \mathrm{p}$ equal to -p if $\mathrm{p}<0$.

```
    | _1 2 _3.2 5 0 _10
123.25010
```

The dyadic function $\mathrm{A} \mid \mathrm{B}$ is the residue function, i.e. its value is the remainder of B after divided by A .

```
    2|!12
101010101010
    2 3 4.5|9
100
    3.2|36.47
300.6
```

The monadic form of ${ }_{\text {. }}$ is the floor function, i.e. the value of.$_{.}$v is the largest integer i which is less than or equal to v .

$$
\text { _. } 9.2310 .5 \text { _1.5 _100 }
$$

9310 _2 _100
The dyadic form of ${ }_{\mathrm{A}}$. is the minimum function, i.e. the value of $a_{-} . b$ is the smaller of a and b.

```
    3 5 7 9.4_. 2 6 8 20
```

2579.4

The functions denoted by \sim. are the mirror images of that for .. . The monadic form of \sim. is the ceiling function, i.e. the value of $\sim . v$ is the smallest integer i which is greater than or equal to v.
~. 9.23 10.5 _1.5 _100
10311 _1 _100
The dyadic form of \sim. is the maximum function, i.e. the value of $a \sim . b$ is the greater of a and b.

```
357 9.4~. 26820
```

36820
The last of arithmetic functions are the circle functions @. The monadic $@ n$ is just $p i$ times n.
@ 123
3.1415936 .2831859 .424778

The dyadic $L @ R$ actually represents a group of functions (mostly trigonometric with several others), where L can take any integer value from _12 to 11; we have

Table of Circle Functions in ELI

L	L @ R	L	L @ R
		0	(1-R*.2)*.0.5
_1	$\arcsin \mathrm{R}$	1	sine R
_2	$\arccos \mathrm{R}$	2	cosine R
_3	arctan R	3	tangent R
-4	(_1 + R*. 2)*.0.5	4	$\left(1+\mathrm{R}^{*} .2\right) * .0 .5$
_5	arcsinh R	5	$\sinh R$
_6	arccosh R	6	cosh R
-7	arctanh R	7	$\tanh R$
_8	-(8 @ R)	8	$\begin{aligned} & -\left(_1-R^{*} .2\right) * .0 .5 \text { for } R>=0 \\ & \left(-1-R^{*} .2\right) * .0 .5 \text { for } R<0 \end{aligned}$
-9	R	9	real R
-10	+R	10	\|R
_11	0j1*R	11	imaginary R
_12	*.0j1*R		

For example,
$4 @ 30.51$

Finally, we remark here that we only used scalar and vector data in our examples in this section as well as in the next section. This is only for convenience and succinctness of presentation. Since they are all scalar functions, they apply to matrices and arrays of higher dimension in a similar manner.

So far our examples of arithmetic functions have only touched real numbers, but we already introduced complex numbers in sect. 1.2, i.e.

```
_1*.0.5
```

$0 j 1$
and dyadic $+,-, *, \%$, . , \%. as well as monadic -, \%, *. just follow the usual rule of complex number mathematical operations. We also have specified how some circle functions apply to complex numbers. We now discuss how monadic + , the conjugate function, and monadic $*$, the signum function apply to complex numbers. For a real number $a,+a$ is just a; for a complex number $+a j b$ is $a j _b$
+2 j3
2j_3

For a complex number $c,{ }^{*} \mathrm{c}$ is a unit length complex number in the same direction as that of c :

```
    *3j4 0j1 0j_1
0.6j0.8 0j1 0j_1
```

We also have the examples of monadic scalar functions applied to complex numbers

```
    %3j4
0.12j0.16
        |3j4
5
    _.2.1j3.2 _1.2j2.5 //floor
2j3 _1j2
    ~.2.1j3.2 _1.2j2.5 //ceiling
2j4 _1j3
    @1
3.141592654
    *.0j1*@1
    // e
_1
    %._1
0j3.141592654
```

We notice that for a floating point number, ELI always prints out up to 10 decimal digits. This is actually controlled by the system variable []PP (printing precision) whose default value in a clear workspace is 10. []PP can be changed to print out increased precision for floating point numbers:

```
    %3
0.3333333333
    @1
3.141592654
    []PP<-12
    %3
0.333333333333
    @1
3.14159265359
    *. }
2.71828182846
```


1.5 relational and logical functions

Relational functions are also scalar functions; they are all dyadic, and all yield boolean results. They are the six primitive relational functions, equal, not equal, greater, greater or equal, less, less or equal :
= ~= \gg= \ll=
(note that for a legitimate primitive symbol in ELI, no blank is allowed in a 2-character symbol such as <=). The first two functions test for equality, and for which A fn B is valid as long as A and B are shape compatible. For the rest 4 functions, left and right operands must be either both numeric or characters. A mixed order comparison will result in a domain error. The order of numeric data is their mathematical order. The order of character data is their ascii-character order.

```
    'A'=1
0
    'A'>'1'
1
    'ABb'<'B'
100
    'ABb'='B'
0 10
    'ABb'>='B'
0 1 1
    14 76 46 54 22 5 68 68 94 39< 50
1010110001
    52 84 4 6 53 68 1 39 7 42 > 14 76 46 54 22 5 68 68 94 39
1100110001
    `abc='abc' (since 'abc is a symbol while 'abc' is a character vector of length 3)
000
```

For two symbols they can only be compared for equal or not equal.
There are three logical functions $\sim(n o t), \wedge(a n d), \&(o r)$ in ELI which operate on boolean data only:

```
    ~101 0 1 1 0 0 0 1
01010011110
    10101100001^1100110011
1000110001
    101011 0001& 1 100110011
1110110011
```


1.6 operators and their derived functions

ELI provides 4 operators to apply to dyadic scalar functions to produce derived functions f; they are reduce / , scan \backslash, outer product .: and inner product : . For / and \backslash the derived function, $f /$ or f, is monadic. When f is ,$++/$ is the summation function, and if f is $\sim ., \sim . /$ is the total maximum function,.$/$ the total minimum function, */ the product function:
$+/!100$
5050
+/14 7646542256839
324
~./14 7646542256839
76
_. $/ 147646542256839$
5
*/14 764654225
290727360
In general, the result of f / v is always a scalar for a vector v ; i) for s a scalar or one element vector, the value f / s is s or a scalar holding value of s; ii) if V is a vector of length n , then

```
f/V ↔-> V[1] f V[2]...V[n-1] f V[n]
```

i.e. the value of f / V is computed by inserting f between all elements of V.
-1345
4
3-4-5 (remember to evaluate from right to left)
4
A special note: to compare a variable b with the - reduction or negation of a, a blank is required

```
        a<-!10
        b<--/a
        b
_5
    b<-/a
left argument missing
    b< -a
1111000000
    b< -/a
0
```

(iii) what happens if v is empty? The result then is the identity element w of the function f, that is the value which is neutral to the function f in the sense that $a f w$ is a for all a :

```
+/!0
```

0
*/! 0
1
$+.10$
0
\&/!0
0
^/! 0

1
(iv) for A being a matrix or higher dimensional array, f / A is evaluated by applying $f /$ to the vector along the last axis of A to form a resulting vector or array

```
    m
    1
5
9 101112
13141516
17 18 19 20
21222324
    +/m
102642
587490
    +/m[1;;]
102642
```

For a commutative function f, i.e. $\mathrm{a} \quad \mathrm{b}=\mathrm{b} f \mathrm{a}$, to get the total f, you can apply ',' to m then do reduce.
$+/$ m
300
or for a matrix operand, you can apply $f /$ twice

```
    +/+/m[1;;]
```

78

What if we want to reduce along the first axis, i.e. columns in case of a matrix? /. would do just that
+/.m[1;;]
15182124
+/.m
14161820
22242628
$\begin{array}{llll}30 & 32 & 34 & 36\end{array}$

The scan operator \backslash also takes a left argument f, which is a dyadic scalar function, to produce a monadic derived function f. When f is,$++\backslash$ is the partial sum function, and if f is \sim., $\sim . \backslash$ is the cumulative maximum function, _. the cumulative minimum function, $* \backslash$ the partial product function:
$+\begin{array}{llllllll}14 & 76 & 46 & 54 & 22 & 5 & 68 & 39\end{array}$
$\begin{array}{llllllll}14 & 90 & 136 & 190 & 212 & 217 & 285 & 324\end{array}$
~. $114 \quad 76 \quad 46$
$\begin{array}{lllllll}14 & 76 & 76 & 76 & 76 & 76 & 76 \\ 76\end{array}$
_. $\backslash 14 \quad 7646542256839$
$\begin{array}{llllllll}14 & 14 & 14 & 14 & 14 & 5 & 5 & 5\end{array}$
*\14 764654225
14106448944264297658145472290727360
$\& \backslash$ turns bits in a boolean bits vector into 1 's once it sees a 1 , and ${ }^{\wedge} \backslash$ turns bits into 0 once it sees a 0 . We'll see later that combine with other primitives, these two derived functions are very useful.

```
    &\0 0 0 1 0 1 1 0 0 0 1
0 0 0 1 1 1 1 1 1 1 1
    ^\1111111011100001
11110000000
```

For the cases (i) and (iii) described above, the result of f is the same as that of $f /$. For a vector v

$$
(f \backslash V)[i] \leftarrow \rightarrow(f / V[!i])
$$

assuming [] $I O=1$, i.e. the value of $f \backslash V$ at position i is the reduce of f on $V[1 \ldots i]$. This rule extends to matrices and other arrays. Hence, scan preserves shape, i.e. $\# f \backslash$ A equals \#A. For the m above,

```
    +\m
    1}33661
    51118 26
    9 193042
13274258
1735 54 74
21436690
    +\m[1;;]
1 3 6 10
5111826
9 19 3042
    +\.m
    1}3243
    5
    9101112
141618 20
22 24 26 28
30 32 34 36
    +\.m[1;;]
    1
    6 8 1012
15182124
```

where the scan along $l^{\text {st }}$ axis operator \backslash. is similarly defined as that of /. reduce along first axis.
Let C be a coefficient vector of a polynomial, and set []$I O=0$, i.e. C represent the polynomial in x of degree n

$$
C[n] x^{n}+\ldots+C[2] x^{2}+C[1] x+C[0]
$$

To evaluate this polynomial at a point B we do

$$
+/ C * 1, * \backslash\left(_1+\# C\right) \# B
$$

We note that the expression to the right of scan is a vector of B's of length $n=(\# C)-1$, and the scan puts that into a vector of successive powers of B.

The other two operators, outer product and inner product, take one (f) and two (f, g) dyadic scalar function(s) respectively to produce dyadic derived functions. The outer product operator is denoted by .: and applies to a function f on its right.$: f$; for two vectors A and B,

$$
(\mathrm{A} .: f \mathrm{~B})[i ; j] \leftrightarrow \mathrm{A}[i] f \mathrm{~B}[j]
$$

```
    A<-15 182124
    B<-100 200235
    A. : *B
\(\begin{array}{lllll}1500 & 3000 & 30 & 45 & 75\end{array}\)
18003600365490
210042004263105
\(2400480048 \quad 72 \quad 120\)
    A.: \%3 52
\(\begin{array}{ll}5 & 3 \\ 7\end{array}\)
639
7410
8412
    (!3). : < ! 5
\(\begin{array}{lllll}0 & 1 & 1 & 1\end{array}\)
00111
00011
```

To see how 1000 dollars will grow under $3 \%, 5 \%$ and 8% of annual interests in 10 years, we do

```
    1000 *1.03 1.05 1.08 .:*. !10
1030 1060.9 1092.727 1125.5088 1159.2741 1194.0523 1229.8739 1266.7701 1304.7732 1343.9164
1050 1102.5 1157.625 1215.5063 1276.2816 1340.0956 1407.1004 1477.4554 1551.3282 1628.8946
1080 1166.4 1259.712 1360.489 1469.3281 1586.8743 1713.8243 1850.9302 1999.0046 2158.925
```

In general, then \#(A.:f $B) \leftrightarrow \rightarrow(\# A), \# B$ as we see for the m above

```
    m.:+100 200 300 400 500
101201 301401501
102 202 302 402 502
103 203 303403 503
104 204 304404504
105 205 305405 505
106206 306406506
107 207 307407 507
108 208 308 408 508
109 209 309409509
110 210 310 410 510
111211311411511
112 212 312412 512
```

```
113213 313413513
114}21431441451
115 215 315415 515
116 216 316 416 516
117 217 317 417 517
118218 318418518
119 219 319419519
120 220 320 420 520
121 221 321421521
122 222 322 422 522
123 223 323 423 523
124224324424524
    cv.:*cv<-2j3 0j2 _2.3 //outer product of *
    _5j12 _6j4 _4.6j_6.9
_6j4 _4 0j_4.6
_4.6j_6.9 0j_4.6 5.29
    +cv.:*cv<-2j3 0j2 _2.3 //conjugate of outer product
    _5j_12 _6j_4 _4.6j6.9
    _6j_4 _4 0j4.6
_4.6j6.9 0j4.6 5.29
```

The inner product operator : takes two dyadic scalar functions f and g to produce a dyadic derived function $f: g$; (we remind APL people $f . g$ is not an inner product in ELI) for vectors v and $\mathrm{w}, \mathrm{v} f: g \mathrm{~W}$ is f / VgW. For example,

```
    V<-2 5 1 4
    W<-1 9 6 7
    V~.:+W
1 4
    V+:~.W
2 4
    m1<-3 4#!12
    b2<-2 3#!6
    m1
1
5
9101112
    b2
123
456
    b2+.*m1
length error (oops, inner product is +:* not +.*)
    b2+:*m1
3844 50 56
83 98 113128
```

So we see that + :* is our usual matrix multiplication, but inner product is more useful than that. Let STS be a slice of data from students' record representing their home states, ST6 represents six Northeast states, and \&. ST6 is the transpose of the character matrix ST6.

STS
NY
NJ
CT
NY
MA
PA
NY
CT
MA

```
RI
PA
NJ
NY
NJ
CT
    ST6
CT
MA
NJ
NY
PA
RI
    &.ST6
CMNNPR
TAJYAI
    STS^:=&.ST6
000100
001000
100000
000100
010000
000010
000100
100000
0 10000
000001
0 0 0 0 1 0
001000
0 0 0 1 0 0
0 0 1 0 0 0
100000
    +/.STS^.:=&.ST6
323421
```

The result of inner product and with equal is a 15 by 6 matrix of 0 and 1's; each row has one 1 points to a matched state and $+/$. gives the number of students from each of the six states.

There is a fifth operator, the axis operator, [x], applies to some structural primitive functions, which we will explain in section $\mathbf{1 . 8}$.

1.7 member of, index of, where, compress, expand and unique

Two very useful mixed functions in ELI are member of (A?S) and index of (V!B). For the first function, both arguments A and S can be any scalar or array; for each elements a in A it tests whether a is a member of the set consisting of elements in S , the result in that corresponding position is 1 if it is, and 0 if not. Hence \#A?S $\leftarrow \rightarrow$ \#A. In particular, if A is empty then the result is empty, and if S is empty then the result is (\#A)\#0. For example,

123 ?! 0
000
(!0)?2 3
(empty vector)
\#(!0)?2 3
0
$5 ?!6$
1
a
ABCD
EFGH
IJKL
s<-'A BOOK'

```
    a?s
1100
0000
0 0 1 0
```

For the index of function $v!c$ the left argument v must be a vector while the right argument c can any scalar or array. For c a scalar, v ! c gives the index of the first element in v which equals to c if c ?v is 1 , or 1 plus the index of the last element of v if c ? v is 0 . This function obviously depends on [] IO which we assume to be 1 here. For example

```
24678!6
(if []IO=0, it would be 2)
23678!5
(if []IO=0, it would be 5)
```

For general $B, \# V!B \leftrightarrow \Rightarrow B$ and each element of V ! B gives the index of the corresponding element of B in V as in the scalar case. For example

> s!a

```
1377
777
767
```

The member of function ? tells us whether a particular element (of an array) is in the set of another array. The index of function! tells us more, i.e. the position, in case the array we check against is a vector. So, index of function gives a kind of associative search capability in ELI. Please note that the roles played by the left and the right arguments in index of (!) are the reverse of that in member of (?).

The monadic form of (?) is the where function: for a boolean (vector) operand $B, \quad ? B$ gives the indices of elements in B which are 1 .
? 100110100010
145711

This function clearly depends on [] IO as the above is for []IO=1, and for[]IO=0 we would have
034610
The compress (B / A) function let us select elements of A according to the left argument B which must be a boolean vector while A can be any array. First, suppose A is a vector v; then we must have

$$
(\# B)=\# V
$$

the function then selects those elements of V whose corresponding element in B is 1 to form the result vector

```
    B<-0=2|V<-!10
    V
12345678910
    B
0101010101
    B/V
246810
    (~B)/V
13579
    X
14764654 22 5 68 39
    +/(X>50)/X
1 9 8
```

Hence, one typically uses a B to represent some proposition P about elements of V to get those and only those by compress; in the above P is the proposition that \{can be evenly divided by 2$\}$, and the result of B / V is the set of even numbers in V . And for a W ,
(V?W) /V
gives the intersection of v and w . Now v may have duplicate elements, but

$$
((V!V)=!\# V) / V
$$

yields the unique elements of v. This is because by the definition of dyadic !, only when an element v [i] appears for the first time, the value of index of at that position would equal to i. V can be characters or floating point numbers. Indeed, we have a monadic primitive function unique $=$ to do just that (note that the right operand must be a vector):
$\begin{array}{llllllllll}14 & 76 & 14 & 46 & 54 & 22 & 5 & 22 & 68 & 5\end{array} 39$
147646542256839

We note that in database circle's terminology, compress ($\mathrm{L}<-\mathrm{B} / \mathrm{A}$) is called selective load where B is the mask. Then what is the corresponding function for selective store (replacing a selective segment in L by another segment W according a mask B) in ELI? Turns out we can utilize the where function (?) together with indexed assignment to achieve that:

```
    v<-' ABCDEFGHI JKLMNOP'
```

 \#v
 16
$\mathrm{m}<-01011011010100111$
?m
2467911141516
w<-'RSTUVWXYZ'
\#w
9
+/m
9
$v[? m]<-w$
v
ARCSETUHVJWLMXYZ

For an array A, B/A selects elements of A along the last axis
a
ABCD
EFGH
I JKL
101 0/a
AC
EG
IK

To compress along the first axis, we have the function / .

10 1/.a
ABCD
IJKL

The function which plays the reversal role to compress is expand, $B \backslash A$, with B also required to be a boolean vector. For a vector V as A , we must have $(+/ \mathrm{B})=\# \mathrm{~V}$, expand then distributes elements of V to positions
corresponding to a 1 in B and fills holes by a typical element of v, which is 0 if v is numeric and a blank if v is a character string.

```
    B
```

0101010101
W<-2 46810
B \backslash
02040608010
$\mathrm{B}<-11011101111111$
W<-'itissimple'
B W
it is simple
$B \backslash A$ extends to array A in a similar manner as that for B / A, and \backslash. is expand along the first axis.

1.8 structural transformations of arrays

In addition to $s \# \mathrm{v}$, there are 9 more primitive functions that transform their array arguments structurally but do not change or re-arrange the values of the array elements. They are take (I^.A), drop (I!.A), first (^.A), rotate (I\$A), reverse (\$A), transpose (\&.A), ravel (, A), catenate (A, B) and laminate (A, [x$] \mathrm{B}$).

When the right argument of a take is a vector v , the left argument I must be an integer. For example
$3^{\wedge} .1234567$
123
_3^. 1234567
567
9^. 1234567
123456700
5^. 'abc 'ddl `comp ‘abc ‘ddl `comp ` `
i.e. $S^{\wedge} . v$ for $S>0($ resp. $S<0)$ takes the first (resp. last) S elements of V, and if $(\mid S)>\# V$, additional slots in the result are filled by the typical element of V (0 for numeric V , ' ' for character V and ' for symbol V). The first function $\wedge . v$ differs from the special case of $1^{\wedge} . \mathrm{V}$:

```
    ^.`abc `ddl `comp
```

‘abc
in that $\mathrm{V}[\mathrm{[fIO}]=\wedge . \mathrm{V}$ is a scalar while $1^{\wedge} . \mathrm{v}$ is a one-element vector; and for any $\mathrm{A}, \wedge .0 \mathrm{AA}$ yields a typical (scalar) element of A. For general A, I is an integer vector such that (\#I) equals \#\#A, and I[j] indicates the number of elements to take along the j-th axis. For example
a
ABCD
EFGH
I JKL
2 3^.a
ABC
EFG
_1 2^.a
IJ
drop !. is the opposite of take ${ }^{\wedge}$., it drops elements from a vector or array instead of taking them to form the result, yet it operates by the same rule:

```
    3!.1234567
```

4567
_3!. 1234567
1234
12 !.a

```
GH
KL
    10!.a
EFGH
I JKL
```

If $S>\# V$, then $S!. V$ results in an empty vector; for $I!$.A, if any $I[j]$ is $>$ length of A 's j-th axis, it results in an empty array. The the rest function in LISP is the special case of $1!. \mathrm{V}$:
$1!.1234567$
234567

The monadic $\$$ is the reverse function, \$A reverses the elements in A for vectors, or along last axis of A:

```
    $1234567
7654321
    $a
DCBA
HGFE
LKJI
```

The reverse function can be modified by the axis operator [1] ([0] in case[]IO=0) to reverse an array along the first axis, or more conveniently, \$. :

```
    $[1]a //$.a
```

I JKL
EFGH
ABCD

The dyadic \$ is the rotate function; I\$A rotates rows (along the last axis) according to integer(s) I. For vector A, I is an integer, it rotates A by I positions to the right (resp. left) right if $I>0$ (resp. left).
$3 \$ 1234567$
4567123
_2 \$ 1234567
6712345
For a matrix A, I is an integer vector of length equal to the depth of A, and each $I[j]$ determines the direction and amount the j-th row $A[j ;$] takes; for I a scalar, then it rotates each row of A by that amount. We have
a
ABCD
EFGH
IJKL
$123 \$ a$
BCDA
GHEF
LIJK
$1 \$ a$
BCDA
FGHE
JKLI
_1 1 2\$a
DABC
FGHE
KLIJ

As in reverse, rotate can also be modified by an axis operator [1] to rotate around the first axis, or just use $\$.:$
1\$[1]a //1\$.a
IJKL
EFGH

ABCD

To rotate a high dimensional array $A, R \$ A, R$ must be a scalar or \#R must equal to _1! \#A:

```
    A<-2 3 4#!24
    2$A
3
7 8 5 6
1112 9 10
1516 13 14
19 20 17 18
23242122
    r // r<-2 3#!6
123
456
    r$A
2
7
12 9 10 11
13 14 15 16
18 19 20 17
23242122
    1<-3 4#!12
    l$.A
13
17}
21 10 23 12
114 3 16
518 7 20
9 221124
```

*rotate $\$[\mathrm{x}]$ with x other than the first or last axis applies to higher dimensional arrays as well, but that has not been implemented at this time.

The monadic transpose \&. of a vector V just leaves V not changed; for a general array $A, \& . A$ reverses the axises of A, i.e. it flips A, the first axis becomes the last axis and the last axis becomes the first, etc. It is easy to see for matrices
\&.a
AEI
BFJ
CGK
DHL
\&. 4 6\#! 24
$\begin{array}{lll}1 & 71319\end{array}$
281420
$\begin{array}{llll}3 & 9 & 15 & 21\end{array}$
4101622
$\begin{array}{llll}5 & 11 & 17 & 23\end{array}$
6121824
Now we can code an interesting piece of ELI that lists temperatures from $\mathrm{C}-4$ to C 15 in descending order together with their Fahrenheit degrees:

```
    &.2 20#c,32+1.8*c<-$_5+!20
15 59
14 57.2
13 55.4
12 53.6
```

```
11 51.8
10 50
    9 48.2
    846.4
    744.6
    6 42.8
    541
    4 39.2
    3 37.4
    2 35.6
    1 33.8
    0 32
_1 30.2
_2 28.4
_3\quad26.6
_4\quad24.8
```

General case for the dyadic transpose function $I \&$. A. has not been implemented at this time, but the special case of taking diagonal with a left argument being 11 is available.

$$
1 \text { 1\&.a }
$$

AFK
w3
123
456
789
1 1\&.w3
159
1 1\&.W<-4 6\#! 24
181522
We have already introduced the monadic function ravel (,) and a limited form of the dyadic function catenate (,) in sect. 1.2. In general, for arrays A and B, A, B is defined with the restriction that ($\# A$) and ($\# B$) must be the same except the lengths of the last axis, so each row of the result is formed by putting together a row from A with a corresponding row from B. Suppose w2<-2 3 4\#! 24 then we have:

```
    w2,c2<-2 3 2#1
1 2 3 4 1 1
5
910111211
1314 15 16 1 1
17 18 19 20 1 1
2122 23 24 1 1
```

If one of the arguments is a scalar, then that scalar is extended to conform to the other operand similar to scalar extension for scalar functions:
'0', a, 'X'

OABCDX
OEFGHX
OIJKLX
If one argument is a vector whose length equals the length of the first dimension of the other operand, then catenate can also be carried out:

```
b1<-'xyz'
a,b1
```

ABCD x
EFGHy
IJKLz

The catenate function (,) can also be modified by the axis operator [1] ([0] in case of index origin $=0$) to catenate two operands along the first axis, which can also be written as ', .':
b
abcd
efgh
a,[1]b //a,.b
ABCD
EFGH
IJKL
abcd
efgh
b2<-'w',b1
a, .b2
ABCD
EFGH
IJKL
wxyz
w2,[2]0
1234
$\begin{array}{llll}5 & 6 & 7 & 8\end{array}$
9101112
0000
$\begin{array}{llll}13 & 141516\end{array}$
17181920
21222324
0000

For two arrays of identical shape, we can specify a fractional number F in an axis specification after ',', A, [F]B to get a new array which joins the two given arrays A and B along a new axis with its relative position indicated by F : for []$I O=1, \quad 0<F=0.5<1$ implies the new axis will be the first axis and the $F=1.5$ last axis. This function is called laminate. For example,

```
    (!5),[0.5]10+!5
1 2 3 4 5
1112131415
    (!5),[1.5]10+!5
11
212
313
414
5
    (!5),[1.5]10
110
210
310
410
510
```

Now the example above for listing converted temperatures can be written as

$$
c,[1.5] 32+1.8 * c<-\$ _5+!20
$$

1.9 encode, decode, sort and short functions

For a vector of integers R and a scalar number A, ($R<. A$), the encode of A by R gives an encoding of A for radix R, and it is of the same length as that of R. For example,

22 2<.32.5
000.5

22222 2<.32.5

```
100000.5
    2 2 2 2<.12
1100
    8 8 8<.12
0 14
    101010<. }1
0 1 2
```

give the binary, octal and decimal representations of the number on right. R needs not to be uniform:
$246060<.3723$
123
means 3723 seconds is the total time of 1 hour 2 minutes and 3 seconds. For a vector A, each j-th column of $R<. A$ is $R<. A[j]$:
$2222<.3158$
011
010
110
110

In general, \#R<.A $\leftrightarrow \rightarrow(\# R)$, \#A.
The decode function R>. A is the inverse operation of encode. We see that

```
    2460 60>.1 2 3
3 7 2 3
    (3#10)>.0 1 2
1 2
    (4#2)>. 1 1 0 1
1 3
    2 2 2 2>.4 3#011010110110
3158
```

$R>$. A reduces the rank of A by 1 and the length of the first axis of A must equal to the length of R.
ELI has two sorting functions grade up $<\mathrm{V}$ and grade down $>\mathrm{V}$ for vector $\mathrm{V},<\mathrm{V}$ is a permutation of the indices of V so that $\mathrm{V}[<\mathrm{V}]$ is in a non-decreasing order. If v is of alphabet characters, it is the alphabetic order.
<'CEA'
312
$V<-5284465368139742$
< V
73498101562
$\mathrm{V}[<\mathrm{V}]$
1467394252536884
cc<-' cbA 12 df '
cc[<cc]
12 Abcdf

The grade down function $>\mathrm{V}$ similarly yields a permutation of indices of V so that $\mathrm{V}[>\mathrm{V}]$ is in a non- increasing order. Note: negation of grade down must be written as - >, not as $->$ which is designated for the branch symbol. Usually, no blanks are required between primitive functions, or a primitive function and a literal/variable similar to APL. This case is a rare exception.

For a sequence of numbers v, the mode of v is the number in v which appears most often in v. For example, if v is 23213583 then the mode of v is 3 . How to find the mode of a numeric sequence x ? We first apply the monadic function unique $=$ to it to get all unique elements u of x and then form the outer product $u:=x$. For example,


```
    u<-=x
    u
7 8 9 2 10 4 5 6 1
    u.:=x
1 0}000000000000000000000110000
1 0}0000000000000000000 0 1 0 0 0
0}001100 0 1 1 1 1 1 0 0 0 00 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0}000010000000000000000000001
0}000000000001100000000 0 0 00 0 0
```



```
0 0 0 0 0 0 0 0 0 0 1 0 00 1 0 0 1 0
0}0000000000 00 0 0 0 1 00 0 0 0 0 1 0,
    +/u.:=x
2 2 5 1 2 1 2 3 2
```

The resulting outer product is a m by n Boolean matrix, where m is the length of u, n is the length of x and each row's 1 s indicating places in x equal to that element in u; to sum up each row is just counting the frequency of occurrence of each element in u. We store this into a variable f and take its maximum and ask where the maximum occurs in f and use this position of figure the corresponding element in u which is the mode of x :

$$
\text { ~./f<-+/u. }:=x
$$

5
?f=~. /f
3
$u[? f=\sim . / f]$
9

To combine the computation we've done so for and we store it into a code segment which we can later reuse, we introduce the short function in ELI which would be explain more in detail in section 4.2; for now we only need to remember that a short function has a right argument x and possibly a left argument y with z or the last expression as its result. A short function start with a ' $\{$ ' and a function name and a ' \because ', it can have one or several expressions separated by ';' and end with a ' $\}$ '. Once defined, it can be called with suitable arguments just like primitive functions. We write the mode function as our first example:

```
\{mode: \(u[? f=\sim . / f<-+/(u<-=x) .:=x]\}\)
```

mode
mode x
9
Given a sequence of numbers as x above, we would like to construct a frequency table with unique elements of x in ascending order in one column and the corresponding frequencies in another column. We have the following short function:

```
    {fqt.b: f<-+/(u<-=x).:=x;a<-u[i<-<u];b<-f[i];([] Number<-a;Frequency<-b)}
fqtb
    fqtb x
Number Frequency
1 2
21
41
\(5 \quad 2\)
63
\(7 \quad 2\)
82
95
```

a is the sorted list of u in ascending order while b is the corresponding list of frequencies; the last statement in the function definition is a way to produce a table in ELI which will be explained in sect.5.2

1.10 execute, format and other mixed functions

The execute function !. S simply executes a character string S which represents a line of legal ELI code.

```
    v<-10
    !.'v<-10*.2'
    v
```

100

It can also turn a string of digits into a number and a string which is preceded by a "' into a symbol:

```
    !.'123'
```

123
! ' ' ${ }^{\prime a b c}$ '
‘abc

If there is any error during execution of s, a relevant error message will be displayed. Why should there be such a primitive function, can't we just type S into our console? It is important to realize that an ELI session is either in execution mode or in function edit mode; so far for convenience, all our presentations are in execution mode. Hence the function!. looks superfluous; but when !. S is embedded in a function text with S possibly a variable, it would make execute a very powerful tool.

So far character data and numbers cannot be mixed together; what if we want to write a report with numeric results? The monadic format function + . A when applies to a numeric or a symbol data A turns A into its display in characters:

```
    #D<-+. }12
```

5
'A', D, B'
A1 2 3B
+. `abc `ddl `comp abc ddl comp \#+. `abc ‘ddl `comp
12

If we want to display a group of numbers in column form, we need to reshape it into a one column matrix first. To display the six states' students' distribution we calculated in sect. 1.6, we do

```
ST6,',,+..6 1#3 2 3 4 2 1
```

CT 3
MA 2
NJ 3
NY 4
PA 2
RI 1
+. 3 1\#`abc `ddl `comp
abc
ddl
comp

The dyadic format function $P+$. A takes a left argument P to specify how the formatting should be done in detail. At present this is not implemented in ELI yet.

The random number generator is quite useful. For positive integer N , the monadic function roll ?. N randomly picks a number from ! N (so it depends on [] IO)

The function also depends on a seed, the system variable []RL which is set to 16807 in a CLEAR workspace. For a vector V of positive integers of length l, ?. V is carried out by executing ?.v[i] l-times. In particular, if we set [] IO=0, then we have a convenient way to generate a bit string of a certain length.
$? .1001000$
76459
[]IO<-0
?.16\#2
1001110110011000

For the dyadic function deal A?.B, both A and B must be positive integers with $\mathrm{A}<=\mathrm{B}$; A. . B picks A distinct numbers from ! B (please remember there is a '. ' after '?' for random number generators)

10?. 100
4168589384529654170
The monadic form of I.A is the factorial function, and the dyadic A।.B is the binomial function, that of taking A distinct items from a collection of B items:

```
    |.6
720
    5|.7
2 1
    |.5 8
12040320
    71.10
1 2 0
```

We note again that there is a . after I compared with common mathematical notations! for factorial and binomial. Also, we see that the factorial function I. is actually a scalar function.

The monadic (mixed) function type denoted by :x gives out the numeric designation of the type of its argument; : x is 0 if x is a boolean, 1 if x is an integer, 2 (4) if x is a floating point (complex) number, 3 if x is a character, and 5 if x is of symbol type, etc., x needs not be a scalar. This function is useful in some applications.

There is another pair of primitive functions, the monadic and dyadic functions of the domino symbol \#. is for matrix inverse \#.М and matrix divide А\#. M which is useful for solving system of linear equations.

```
    m<-3 3#4 6 0 3 2 2 1 3 4
    m
40
322
134
    #.m
_3.84615e-002 0.461538 _0.230769
0.192308 -0.307692 0.153846
_0.134615 0.115385 0.192308
    m+:* #.m
\(0 \quad 0\)
1 0
0 0 1
```

(*some of the 0s are not exact due to precision). Matrix divide, the dyadic form of \#., is a generalization of matrix inverse, which can be seen as a matrix divide with the left operand being the identity matrix. For A\#.B to be defined, both A and B must have rank no more than 2, and $A \# . B$ is defined to be that of a matrix of shape (1!. \#B), 1!.A which minimizes $+/,(A-B+: * A \# . B) * .2$ (columns of B must be linearly independent, if A or B is a
vector, then it is regarded as a one column matrix). For two vectors x and y, to compute regression using the least-square method, we simply do

$$
\text { y\#. x.:*. } 01
$$

The abundance of primitive functions in ELI may need a bit of time to get used to for C/MATLAB programmers. However, providing commonly used functions as language primitives not only relieves one the need to remember many library function names but offers consistency and clarity and encourages a dataflow style of programming as we shall see in examples in the next chapter. Since most primitives in ELI are array primitive, that is, they apply directly to arrays; programming solutions in ELI are often thru arrays, not iterations thru loops as in C/FORTRAN.

2. Lists and related Operations

2.1 lists, enclose, raze and match

The arrays we dealt with so far are all homogeneous, i.e. the elements in an array are all of the same type, numeric, character or symbol. What can we do if we want to operate on non-homogeneous data, or data which are not rectangular? ELI provides lists to organize such data: a list is a group of items, each of which can be a scalar, an array, or another list, separated by ';':

```
    a<-(`abc `ddl `comp;1 2 3)
    a
<`abc `ddl `comp
<1 2 3
    #(`abc `ddl `comp;1 2 3)
2
    L<-(`abc `ddl `comp;1 2 3)
    L[1]
`abc `ddl `comp
    L[2]
123
    (s;n)<-L
    s
`abc `ddl `comp
    n
123
    L1<-(`a `b;L)
    L1
<'a 'b
<<`abc `ddl `comp
    <1 2 3
```

We see that a list can be counted and indexed like a vector. Most importantly, a list L can be assigned to a group of variables all at once, where the number of variables is equal to \# L . A list can be entered with items containing expressions or another list:

```
    a<-2 3 4
    (a+1;$'avc';'rr `bb)
<34 5
<cva
<'rr 'bb
(2 3 4;(`ab;'abc');;!10)
<2 3 4
<<'ab
    <abc
<
<0123456789
```

To enter a list of one item, we employ the monadic primitive function enclose $<$. :

```
#L<-<.2 4#!12
```

1
L
$\begin{array}{llll}<1 & 2 & 3 & 4\end{array}$
$\begin{array}{llll}5 & 6 & 7 & 8\end{array}$
Lm<-<. (!3;'abc'; x 'y)
Lm
<<1 23
<abc
<'x 'y

Lists can be catenated and have indexed assignments

```
    #L0<-L,<.'abc'
```

2
L0
$\begin{array}{llll}<1 & 2 & 3 & 4\end{array}$
$\begin{array}{llll}5 & 6 & 7 & 8\end{array}$
<abc

One dimentional reshape does work for lists, and a special case of reshape works for allocating a list of n empty items (denoted by the underline symbol _) is particularly useful.

```
    L1<-('Hello World';`Smith `Jobs `Bates;10 0.5 78 0 1)
```

 L1
 <Hello World
<'Smith 'Jobs 'Bates
<100.57801
2\#L1
<Hello World
<'Smith 'Jobs 'Bates
\#L1
3
5\#L1
<Hello World
<'Smith 'Jobs 'Bates
<100.57801
<Hello World
<'Smith 'Jobs 'Bates
\#Ln<-3\#_
3
$\operatorname{Ln}[12]<-L 0$
Ln
$\begin{array}{llll}<1 & 2 & 3 & 4\end{array}$
$\begin{array}{llll}5 & 6 & 7 & 8\end{array}$
<abc
$<$
take and drop work on lists as expected:

```
        3^.L
<1 2 2 3 4
    5
<
    1!.Ln
<abc
<
```

The first function ^. also applies to a list L, i.e. ${ }^{\wedge}$. L is L[[] IO] ; for L as above, we have

```
    ^.L
1 2 3 4
5
```

Hence, if a list L1 which has only one item, the function ${ }^{\wedge}$. L1 serves as the disclose of L1. i.e. the inverse of the enclose function.

For a more general list Ll which is homogeneous, i.e. as defined recursively all items in Ll are all of the same type, either numeric, character or symbol (and later temporal), then the monadic function raze,..Ll is defined
to be a vector resulting from concatenating recursively all items in L . So raze turns a list into a vector if it is homogeneous. For example,

```
    l<-(1;2 3)
    L<-(2.1 3.5 6;7 8;1)
    L
<2.1 3.5 6
<7 8
<<1
<2 3
    ,.L
2.13.5678 1 2 3
    chl<-('ABC';'GH';'WW225E')
    ,.chl
ABCGHWW225E
```

The dyadic function match $\mathrm{L} \sim \mathrm{R}$ works for any left and right operands (these including data types to be introduced later such as dictionaries and tables); it gives out a 1 if both sides L and R have the same structure and at every level both sides have the same data and a 0 otherwise. For two values to be considered the same, they must be of the same structure (so unlike = there is no scalar extension) so a list is not the same as an array; for two lists to be the same they must have the same structure at each level of comparison and have equal type/value of their elements at the lowest level (Usually, match is used in debugging programs to check the variable value). We illustrate its difference with the equal function by the following examples:

$$
1=, 1
$$

1

$$
1 \sim \text {,1 //a scalar does not match a one element vector }
$$

0
$1=<.1 \quad / / a$ scalar not equal to a one element list
0
0
$1=123$ //scalar extension of the = primitive function
100
1 ~ 123 // a scalar does not match a vector
0
'' = ! $0 \quad$ /the result of $=$ is an empty vector
,' ~ ! 0 //both sides are an empty vector
1
2015.08.06=2015 0806
000
2015.08.06~2015 0806
0
$(a ; b ; c)=\left(a<-' a a^{\prime} ; b<-123 ; c<-` c\right) \quad / / E L I$ executes right side first to give values to $a ; b ; c$
domain error //= does not apply to lists
(a;b;c) ~ (a<-'aa';1 $23 ;{ }^{\prime} c$) //both sides are of the same structure, i.e. list with same items
1

2.2 partition, partition count and grouping

enclose turns a scalar or an array into a one item list. To turn a vector into a more general list, ELI has a dyadic primitive function partition $\mathrm{y} \| \mathrm{x}$, where x is the source vector, and y is a positive integer or a vector of non-negative integers specifying how x is going to be partitioned into a list. If y is a single number, then x is cut into a list with each item has y elements from x sequentially, except the last item which may have less than y elements from x if there are less than y elements in x left to fill. For example,
w<-11?. 100

```
    W
14764654 22 5 68 94 39 52 84
    3||w
<14 76 46
<54 22 5
<68 94 39
<52 }8
If 1<^y, then }\textrm{x}\mathrm{ is cut into a list L such that i-th item of L has the next y [i] elements of }x,i=1..^^y
    345 || w
<14 76 46
<54 22 5 68
<94 39 52 84
If x is a matrix or an array in general, then the partition \(\mathrm{y}|\mid \mathrm{x}\) cuts x along the first axis according to y :
```

```
    m<-5 4#!20
```

 m<-5 4#!20
 2 3 1||m
 2 3 1||m
 <12 3 4
<12 3 4
5 6 7 8
5 6 7 8
< 9 10 11 12
< 9 10 11 12
13141516
13141516
17181920
17181920
<

```
<
```

The monadic form of $\|$ is the partition count function; its argument x is a boolean vector starting with a 1 and its result $|\mid x$ is an vector of integers where each element is the length of a segment starting with 1 and ending with the last 0 before the next 1 .

11100100010000
345
(' This is an example'=' ')

```
1000010010010000000
```

||(' This is an example'=' ')
5338
(||(' This is an example'=' '))||' This is an example'
< This
< is
$<$ an
< example
Another primitive function which produces a list based on a vector x is grouping: >. x is a list of indices of x such that each item in the result consists of indices of elements in x corresponding to unique values in x, i.e. $(\#>. x)=\#=x,(>. x)[i]$ is $? x=(=x)[i]$ for i from 1 to \#=x. For example,
stk
`ibm `appl `ibm `hp `goog `hp `ibm `ibm `appl `ibm `hp `goog `hp `ibm `ibm `appl `ibm `hp il<->.stk
il
$\begin{array}{lllllll}<1 & 3 & 7 & 8 & 10 & 14 & 15 \\ 17\end{array}$
<2916
$\begin{array}{lllll}<4 & 6 & 11 & 13 & 18\end{array}$
<5 12
For a vector v and a list I whose elements are legitimate indices of v (i.e. for all i in each item $I[j], v[i]$ is well-defined)

V[I]
is a list of the same structure as that of I, i.e. $V[I][j]$ is $V[I[j]]$ for each j in!\#I.

```
    V
14 76 46 54 22 5 68 94 39 52
    I<-(1 2;3 4 5; 6 7 8 9;10)
    I
<12
<34 5
<678 9
<10
    V[I]
<14 76
<46 54 22
< 56894 39
<52
```

Suppose that
prc
109.1523 .6107 .23735835102 .3103 .255199 .833370 .131 .298 .9101 .958810030 .5
is a vector of corresponding trading prices of companies whose stock symbols appeared in stk above; then the following
prc[>.stk]
<109.1 107.2 102.3103 .299 .898 .9101 .9100
<523.6551588
$<37353331.230 .5$
<358 370.1
is a list of stock prices grouped by trading symbols. With each operator in the next section, we have

```
    prices<-prc[>.stk]
```

 ^"prices
 <8
<3
<5
<2

2.3 the each operator

The each operator " operates on lists, or a scalar/array and a list. For a monadic function f, and a list L, $f^{\prime \prime} \mathrm{L}$ is evaluated by applying f to each component $L[j]$ of L to result in a vector or another list z of the same structure as that of L : \#f"L is of the same (length) as \#L and each element of $z[j]$ is $f L[j]$ which must be well-defined for all j. For v and I as in the previous section, we have

```
    V1<-V-22
    W<-V1[I]
    *"W
<_1 1
< 110
<_1 1 1 1 1
< 1
```

Since this result is homogeneous, we can apply raze to it:

```
    ,.*"W
11110111111
```

We note here that the function f associated with operators we discussed earlier must be scalar functions. In case of the each operator, f can be a mixed function, a derived function or even a defined function (to be introduced in the next chapter). For example,

```
    ,.#"W
241
```

For numeric $L,+/ " L$ is a vector of sums of each item in L :

$$
, .+/ " W
$$

465611830
$+\backslash \bar{L}$ is a list of same structure as that of L with each item the partial sum of the corresponding item of $\mathrm{L} . \operatorname{avg} \mathrm{L}$ is similarly defined for a defined function avg.

For a dyadic function g, a scalar s and a list $\mathrm{L}, \mathrm{s} \mathrm{g}^{\prime \prime} \mathrm{L}$ is defined by applying ($\mathrm{s} g$) to each item of L as ($\mathrm{s} g$ $\mathrm{L}[\mathrm{i}]$). For example, $1+\overline{\mathrm{L}}$ adds a 1 to each item in $\mathrm{L} ; 1^{\wedge} .{ }^{\prime \prime} \mathrm{L}$ will result in a vector or list, depending on whether L is homogeneous or not, of length \# L consisting of all first elements of items in L . For a vector a of the same length as that of L, a $g^{\prime \prime} L$ is defined if a [i] $g L[i]$ is defined for each i in !\# L. For a one-item list $1,1 g^{\prime \prime} \mathrm{L}$ is defined if (^.1) $g \mathrm{~L}[\mathrm{i}]$ is defined for each i in ! \#L. $\mathrm{L} g^{\prime \prime} \mathrm{r}$ is similarly defined for a scalar/vector or one item list r. For two lists L1, L2, L1 $g^{\prime \prime}$ L2 is defined if

L1[i] g L2[i]
is defined for each i in ! \#L1 where (\#L1) $=\# \mathrm{~L} 2$, and as in the monadic case, g can be a mixed function, derived function or a defined function, but for each i, L1[i] g L[i] must be well-defined. We have

```
    L<-(1 2;3 4 5)
    1+"L
<2 3
<456
    L2<-(7 8;1 2 3)
    L2+"L
<8 10
<4 6 8
    #"L
<2
<3
    (2 3;5;2 3 4)#"<.!6
<123
    456
<12345
<1234
    5 6 1 2
    3456
    1234
    5612
    3456
        L*"2
<24
<6 8 10
```

Suppose we want to produce a group of 4 consecutive integers but with different starting points, we do

```
    0 _1 1 2+"<.!5
<12345
<01234
<2 3 4 5 6
<34567
```

Note that it is important to enclose $!5$, and in the each reshape below enclose 23 is necessary:

```
    a<-(1 2;3 4 5;7)
```

 2^."a
 <1 2

```
<3 4
<7 0
    _1!."a
<1
<34
<
    10,"a
<10 1 2
<10345
<10 }
    a,"10
<1210
<34510
<7 10
    #"a
<2
<3
<
    ^"a
231
    3#"a
<1 2 1
<34 5
<777
    2 3#"a
length error
    2 3#"a
    (<.2 3)#"a
<1 2 1
    2 12
<345
    345
    <777
    77
        (<.2 3)?"a
    <1 0
    <0 1
    <0 0
    a?"<.2 3
<0 1
<100
<0
        ?"(01001;100;0010001)
<2 5
<1
<37
    6_."a
<12
<345
<6
```

The each operator can also apply to derived functions as well as defined functions (see next chapter).

```
    +/"a
<3
<12
<7
    ~./"a
<2
<5
<7
```


2.4 temporal data

There are six types of temporal data in ELI to handle date and time: date, time, month, minute, second, datetime (We note that values in date start with 2001.01.01):

```
    d<-2012.04.02 //type date
    d
2012.04.02
    d+1
2012.04.03
    2016.05.16+7*7 //seven weeks after next Monday
2016.07.04
    t<-14:37:07.123 //type time
    t+100
14:37:07.223
    23:11:12+10*1 2 3 //type second
23:11:22 23:11:32 23:11:42
    dm<-2012.04m //type month
    dm+1 2 3
2012.05m 2012.06m 2012.07m
    2012.04.02T14:37:07.123+55 //type datetime
2012.04.02T14:37:07.178
    23:30+30 //type minute
00:00
    23:30-15
23:15
    23:15<22:10
0
```

However, we need to be careful as data of type minute are different from integers as we can see below:

```
    2:14+30
2| 44
    02:14+30
02:44
    12:07+11:03
error time format
    12:07+11:03
        ^
```

The first expression is wrong because the hour portion of a minute must be of two digits, and problem with the last expression is that we can't add data of minute type while we can an integer (numerical minute) to it.

We see that addition and subtraction to temporal data are interpreted according to their type, and no other arithmetic function applies to temporal data. Furthermore, unlike numeric data, both operands temporal data must be of the same type. This last rule also applies to relational functions comparing two temporal data. The format function + . can be used to convert a temporal data into its character representation:

```
\#dtc<-+.2012.04.02T14:37:07.178
```

23
10^. dtc
2012.04.02

11!.dtc
14:37:07.178
In fact, there are two functions in based on this, $d t 2 d$ and $d t 2 s$ which converts a datetime to its character representation in date and second while dt 2 dat and dt 2 sec which converts it into type date and second in the standard library (see sect.4.5); and a function there to convert a date after 2000.01.01 into a weekday. We also have dot natation to convert a datetime, date or time data into its subparts if applicable:

[^0]```
 dt2d t
2013.06.20
 dt2s t
19:00:16
 dt2dat t //a scalar
2013.06.20
 dt2sec t //a scalar
19:00:16
 dat2wdc dt2dat t
Thu
 t.year
2 0 1 3
 t.month
6
 t.day
20
 t.hour
1 9
 t.minute
0
 t.second
1 6
 t.ms
4 7 8
```

The previous four expressions also apply if t is a time, and the three expressions above that apply to t being a date. There are also functions converting date or seconds into numeric vectors in the standard library:
dt2ymd t
2013620
dt2hms t
19016
\#dt2ymd t
3
\#dt2hms t
3

Temporal data are used for storing time stamps in database systems. We note that APL systems in general, other than $\mathbf{k d b}$, only provide a system function [] TS to record a time stamp, not temporal data types as data of first class citizen.

## 3. Defined Functions and Sequence Control

## 3.1 defined functions and evaluating one line

In the last two chapters we introduced all primitive functions and operators provided by the ELI system. In this chapter, we shall describe how a user can define one's own function. To define a function, you must be in edit mode; to switch from execution mode to edit mode, you type in the del symbol @. followed by a name for the function you want to define
@. add
The system switches to edit mode by creating a new line, and you type in the definition of your function line by line

```
[0] \(z<-a\) add \(b\)
[1] \(z<-a+b\)
[2] @.
```

type another @. when you finish defining your function and the system switches back to execution mode. In Linux/Mac OS, you can type either just the del symbol @. or @. followed by the whole function head to switch to edit mode. Please note that since Linux/Mac OS version is line-based, once you typed in your head line you cannot go back to make corrections; in the first case you start defining your function by typing in the head line, and in the second case you continue by typing in the first line of your function. When you finish your function definition, just as in Windows, types a matching @. in a new line to switch back to execution mode. We can check to see whether the function is there, see its' definition and try it out.

```
)fns (to see all defined functions that are available in this workspace)
add
 3 add 4
7
 {add}
[0] z<-a add b
[1] z<-a+b
```

Another way to see a defined function's text is using the system function []CR; the argument to []CR is the function name and the result is the character matrix of the function text:

```
 []CR 'add'
z<-a add b
z<-a+b
 #[]CR 'add'
210
```

A defined function can take one (right) or two arguments (left and right) just as primitive functions do, i.e. it can be a monadic or dyadic function; but a defined function can have no argument, such a function is called niladic. A defined function can return a result or return no result. The result returned by a defined function can be an array as well as a scalar. The first line (line [0]) of a defined function is of the form
function-header <; local-variable-list>
function-header must be one of the six forms below:

| type | valence | have result | no result |
| :--- | :---: | :--- | :---: |
| niladic | 0 | $R<-F N$ | $F N$ |
| monadic | 1 | $R<-F N B$ | $F N B$ |
| dyadic | 2 | $R<-A F N B$ | $A$ FN B |

where valence is the number of arguments the function takes, $R$ is the name of the returned result, FN the name of the function, $A$ is the name of the left argument and $B$ is the name of the right argument (you can, of course, give different names to each one of them). The arguments can be arrays and lists, not just scalars. We can use an explicit list notation on the right to effectively input more than 2 arguments:

```
`sales bk_load (sa;cu;it;am;py;dt;sp)
```

In fact, the right argument can consist of several sub-arguments without formally entering it as a list and unpacking its components in the first line of the function. For an example:

```
-------margfn-------
[0] z<-le margfn (a;b;c)
[1] []<-c //output c
[2] z<-le+a+:*b

 x<-3 4#!24
 y<-4 2#_1 2 3 _5 8 10 1 0
 x
1
5
9101112
 y
_1 2
3 _5
810
1 0
 1000 margfn (x;y;'a test for multi-arg function.')
a test for multi-arg function.
10331022
1 0 7 7 1 0 5 0
1 1 2 1 1 0 7 8
```

The local-variable-list in the function header-line is optional; it is there only if you wish to localize a group of variables. The list starts with a ';', and variable names in the list are separated by ';'. If a variable named V1 is localized in a function AF, then first during execution of AF, ELI will look for the value of V1 assigned inside AF regardless whether a variable also named V1 exists in the environment where AF is called; second, when AF finishes execution the value of V1 obtained in AF will disappear. In other words, any variable named V1 in the environment is protected by the localization of V1 in AF. We illustrate with the following example

```
@.BF:...
 V1<-1
 AF
@.
@.AF;V1
 ...
 V1<-V1+1
@.
```

Function BF calls AF after assigns value 1 to V 1 . However, if there is no assignment to variable V 1 before execution of AF reaches the line of adding 1 to V1, a value error will result. After the function AF finishes and returns to its caller BF , the variable V 1 still holds its old value 1 before the invocation of AF . The code in AF involving V1 accesses and modifies its private copy of a variable named V1. Since the localization, or shadowing, of variables in ELI depends on the calling sequence of functions, it is called dynamic binding of identifiers. This is in contrast to the static binding of identifiers in PASCAL.

A function's result, if there is any, and function parameters, i.e. arguments, are considered to be localized automatically. Hence, parameter passing in ELI is by-value. For example, when the function FN1

```
@.Z<-A FN1 B;C
@.
Z<-bigA FN1 bigB
```

is called by the line above, where bigA and bigB are two large arrays, then first these two arrays are copied into $A$ and $B$ at the start of the function $F N 1$, and their values would not be changed at the of the end of the function call. Second, if FN1, thru some path, exits without assigning Z any value then the line will result in a value error after function exit. Copying large arrays in parameter transmission certainly is inefficient. There are programming techniques to put such arrays as global variables, or use sophisticated compiler techniques to avoid copying in case there is no modification to their elements in FN1; but we are not going into detail discussion of this issue in the Primer.

With the classification of (user) defined functions done, we can now give a more formal definition on how to evaluate one line of code $L$ in ELI as follows. Start from the right end of $L$, it must begin with a literal data, a variable or a niladic function with a result. For a variable get its value, or evaluation stops with a value error; if it is a niladic function, execute that function and get its return value. In each case, we get a value $c v$. If there is nothing to the left of it, $c v$ is the final value of the line $L$; otherwise what to its left must be a primitive function $p f$ or a defined function $d f$. For a monadic $d f$, we execute $d f c v$ to get a new $c v$ and keep going. If $d f$ is a dyadic function, we look to the left of $d f$ to get the value $l v$ of its left argument; in case there is nothing to the left of $d f$, we get a valence error. What to the immediate left of $d f$ must be a literal data, a variable with value, a niladic function with a result or a right parenthesis ')'. In the first three cases, we get $l v$ as before and execute $l v d f c v$ to get a new $c v$ and keep going. In case of ')', we recursively evaluate the code inside (...) to get a value $l v$ and proceed as in the previous 3 cases. For a $p f$, if $p f$ can only represent a monadic function or a dyadic function, then we do the same as what we described for $d f$. If $p f$ can either be dyadic or monadic, we decide by checking whether there is literal, variable, niladic function with a result or a right parenthesis to the left of $p f$ and proceed accordingly.

## 3.2 one line examples

We have already seen several examples of one line code in chapter 1 in the process of introducing various primitive functions and operators. We shall now add two more examples from the perspective of implementing specific tasks thru a process of refinement. The strategy is to first layout a function which has the basic idea that works, then make it more efficient, or works for more general cases. From these examples, we also gain an understanding of the dataflow style of programming (this refers to writing long line of code where output from one expression is immediately used as input to the next expression) subtly encouraged by ELI, and come to appreciate the difference between APL, Q, ELI in one camp and conventional array languages such as MATLAB, R, Octave and SciLab in the other.

Our first example is that of finding prime numbers up to N . The idea is to setup a multiplication table of $2 . . \mathrm{N}$ by $2 . . \mathrm{N}$, then numbers not in that table are primes:
\{prim\}

[0] z<-prim n
[1] $z<-(\sim v ? v .: * v) / v<-1!.!n$
prim 100
2357111317192329313741434753596167717379838997

The program prim is clearly inefficient, but the basic idea of having $v$ as the vector $2 \ldots$ and using $\sim \ldots$ ? multiplication table is clear enough. We can improve on several fronts. First, other than 2 , all primes are odd
numbers; second a smaller multiplication table of square root of $n$ by one third of $n$ should be large enough to cover all numbers up to $n$. Hence, we have
\{prime\}
---------prime-------
[0] $z<-$ prime $n$; v
[1] $z<-2,\left(\sim v ?\left(2!.!_{-} . n * .0 .5\right) .: * 2!.!\sim . n \% 3\right) / v<-1+2 *!_{-} .(n-1) \% 2$
prime 300



Here $v$ is the vector of odd number from 3 to near $n$, and 2 is added to the result list after all odd primes up to $n$ have been selected from elimination of multiples.

The second example is word counting: given a text $T X$ which is a matrix of characters consisting of English alphabets, punctuation marks and blanks, we would like to count the number of words in TX. We can assume that if a word ends with a punctuation mark not on the text boundary, it is always followed by a blank. Hence, to count words in TX is somehow related to counting blanks in TX. First, let us make a simplifying assumption that each word ends in precisely one blank. So, we just count the number of blanks in $T X$ by

$$
\text { wc<-+/+/b<-' ' }=T X
$$

where $b$ a boolean matrix of the same shape as that of $T X$ which has a 1 at each position corresponding to a blank in TX. $\quad+/ \mathrm{b}$ is a list of integers indicating the number of blanks in each row of $T X$, and $+/+/ \mathrm{b}$ is the total number of blanks.

The simplifying assumption has three problems: 1) a word may end in the right side boundary, 2) there may be more than one blank following a word, and 3) in the beginning of a line we may have blank(s) to start with. To overcome these problems, we construct another boolean matrix btl by removing the first column of $b$ and gluing a column of 1 's to its right. This has the same effect as putting a column of blanks at the right boundary to end a word but ignoring the first column. A blank which truly ends a word is then a blank whose predecessor is not a blank that is a 1 in btl but a 0 in b. For example

```
 TX
ABC CFM
N,GH D
F ABC GF
 b<-' '=TX
 b
10001000
0 0 1 0 0 1 1 0
01000100
 btl<-(0 1!.b),1
 btl
00010001
01001101
10001001
 btl^~b
0001 0001
01001001
10001001
```

Hence, the function we want is
@. z<-COUNT TEXT;b
z<-+/+/((0 1!.b),1)^~b<-‘ ‘=TEXT
@.
COUNT TX

In contrast to the C program solution in sec.1.5.4 in [3], we see that the style of C programming is sequential in the sense that a solution is reached through a loop while in ELI it comes from a calculation with global characteristics. The ELI approach is what we call array-oriented programming. It takes time to gain proficiency in writing this style of code for a person comes from $\mathrm{C} / \mathrm{C}++$ background but it accrues advantage in parallel processing which we will not go into a detailed explanation here.

## 3.3 transfer of control by branching and stopping

So far we have only seen examples of straight-line code, and presumably we can execute one line after another in a multi-line function code. How do we write code with alternate choices and loops? A simple mechanism to do that in ELI is branching which is of the form
-> branch-expression
When we execute a function F line by line in their line number (textual) order until we hit a branch expression; we evaluate that expression just like we evaluate any other ELI line. If the expression evaluates to an empty vector, execution continues with the next line in F . If it is 0 , i.e.

$$
\text { -> } 0
$$

or any number out of range of F 's line numbers, function F returns to its' caller which can be ELI system or another function $G$. If it is the line number of a statement in $F$, that statement is to be executed next. A statement in a function text can be prefixed by a label, and that label has the value of the line number of that statement. For example

$$
\text { [5] LABEL1: } X<-X+1
$$

The label LABEL1 has value 5. Frequently, one uses the following form

$$
\begin{aligned}
& ->(\sim B E) / E L S E \\
& \ldots \\
& \text { ELSE: ... }
\end{aligned}
$$

to jump to the ELSE line in case BE is false. Of course, ELSE: can be a line precede the branch line thus forms a while or for loop. In general, a way to do multiple branching is as follows

$$
->(\mathrm{BEV}) / \mathrm{L} 1, \mathrm{~L} 2, \ldots, \mathrm{Ln}
$$

where BEV is a boolean vector and the branch goes to the line label Lk if k-th bit is the first set bit of BEV. Another frequently used branching pattern, assuming [] $I 0=0$, is

$$
->(L 0, L 1)[B E X]
$$

which branches to either L0 or L1 depending on whether BEX is false or true.
If the branch-expression after $\rightarrow$ is a character string instead of a line number, the execution would stop after display the character string. For example,
->'L0 and L1 are not equal'
Note that this differs from output the message and then $->0$. For in the second case, execution would continue after return of the function where the message is triggered.

## 3.4 control structures

For numerical computations, where the need of branching is infrequent once many loops would have been eliminated by array primitives, transfer of control by computed goto is tolerable. But for implementing complex systems such as a modern compiler that is quite inconvenient. *ELI has control structures with seven reserved words:
if else case for while break continue
and we define a statement in ELI as follows where I indicates alternate choices, $[\boldsymbol{a}]$ " (resp. $[\boldsymbol{a}]^{+}$) means repeat item $\boldsymbol{a}$ zero (resp. one) or more times, and simple-statement is just an ELI expression:

```
statement: simple-statement | control-statement I {statement [separater statement]"}
separator ; I newline
control-statement if-statement | case-statement | for-statement | while-statement
if-statement: if (bool-expression) statement [[else if (bool-expression) statement]" else statement
case-statement: case (case-expression) {case-lists [else statement]}
 case-list : [v1[,v2..vn]: statement]}\mp@subsup{}{}{+
for-statement: for (idxv:for-format) statement
 for-format: strv;endv[;step] I idxlist
while-statement: while (bool-expression) statement
```

break and continue can only present inside a for statement or a while statement, and their effects are to exit the enclosing statement or to start a new iteration. case expression must be an expression of discrete scalar type, i.e. it must result in an integer, a character or a symbol:

```
@.z<-tst_cas x
 case (:x) {
 0,1:z<-x+10
 2:z<-x*10
 3:z<-x
 5:case (x) {
 `select:z<-'SELECT'
 `exec:z<-'EXEC'
 else z<-'***'
 }
 else z<-x+100
 }
@.
 tst_cas 9
1 9
 tst_cas 1.2
1 2
 tst_cas 'ABC'
ABC
 tst_cas `ABC

 tst_cas 20:55
22:35
```

A partial ordering $<$ on a set $S$ is a relation among elements of $S$ such that

$$
a, b, c \text { in } S, \quad a<b, b<c \rightarrow \quad a<c
$$

Let us introduce an ordering among nodes of a directed graph G represented as a Boolean connection matrix:

$$
I<J \text { if } G[I ; J]=1
$$

This is a partial ordering; a topological sort of $G$ then is a linear ordering of $G$ compatible with that partial ordering. An algorithm (from Wirth[4]) to do a topological sort is the following:
$\boldsymbol{L} \leftarrow$ Empty list that will contain the sorted elements
$S \leftarrow$ Set of all nodes with no incoming edges
while $S$ is non-empty do
remove a node $\boldsymbol{n}$ from $\boldsymbol{S}$

```
 insert }\boldsymbol{n}\mathrm{ into }\boldsymbol{L
 for each node \boldsymbol{m}\mathrm{ with an edge }\boldsymbol{e}\mathrm{ from }\boldsymbol{n}\mathrm{ to }\boldsymbol{m}\mathrm{ do}
 remove edge e}\mathrm{ from the graph
 if m}\mathrm{ has no other incoming edges then
 insert m}\mathrm{ into S
if graph has edges then
 output error message (graph has at least one cycle)
else
 output message (proposed topologically sorted order: L
```

We note that for a node $\mathrm{N}, \mathrm{G}[\mathrm{i} \mathrm{N}]$ indicates all nodes with edges to N , and $\mathrm{G}[\mathrm{N} ; \mathrm{]}$ all nodes having edges from N . The code in ELI is as follows

```
[0] L<-TSORT G;N;ML
[1] L<-!0
[2] S<-(0=+/.G)/GL<-!1^.#G
[3] while (0<#S) {
[4] L<-L,N<-S[1]
[5] S<-1!.S
[6] ML<-G[N;]/GL
[7] G[N;ML]<- 0
[8] S<-S,(0=+/.G[;ML])/ML
[9] }
[10]if (0<+/+/G) []<-'Graph G is not acyclic.'
```

    G
    01010100
00000000
00010001
00000000
10000000
00000000
10000001
00000100
TSORT G
35718246

We remark here that []$C R$ ' $f n 1$ ' always displays a defined function $f n 1$ as entered while $\{f n 1\}$ only displays a function after the function $\mathrm{fn1}$ has been executed at least once and where control structure statements have already been translated into standard branch forms. For example,
) fload TSORT

```
saved 2012.11.01 23:05:56 (gmt-5)
```

    )fns
    TSORT
[]CR 'TSORT'
Z<-TSORT G;N;ML
L<-! 0
S<-(0=+/.G)/GL<-!^.\#G
while(0<\#S) \{
L<-L,N<-S[1]
S<-1!.S
ML<-G[N;]/GL
G[N;ML]<-0
S<-S, (0=+/.G[;ML])/ML
\}
if $(0<+/+/ G) Z<-$ 'Graph $G$ is not a cyclic'
else Z<-L
\{TSORT\}
--------TSORT-------
) vars

TSORT G
35718246
\{TSORT\}
--------TSORT-------
[ 0] Z<-TSORT G;N;ML
[ 1] L<-! 0
[ 2] $\mathrm{S}<-(0=+/ . \mathrm{G}) / \mathrm{GL}<-$ ! $^{\wedge} . \# \mathrm{G}$
[ 3] L0:->(~0<\#S)/L1
[4] L<-L,N<-S[1]
[5] $\mathrm{S}<-1$ !. S
[ 6] ML<-G[N;]/GL
[ 7] G[N;ML]<-0
[ 8] S<-S, (0=+/.G[;ML])/ML
[ 9] ->L0
[10] L1:-> $(\sim 0<+/+/ G) / L 2$
[11] $\mathrm{Z}<-$ 'Graph $G$ is not a cyclic'
[12] $->$ L3
[13] $\mathrm{L} 2: \mathrm{Z}<-\mathrm{L}$
[14] L3:

## 3.5 recursive functions

ELI support recursive functions. An example is that of rprime: to find prime numbers up to N recursively.

```
p<-rprime n;i
p<-2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
if (n<=100) p<-(n>=p)/p
else {pl<-#p<-rprime _.n*.0.5
 b<-n#0
 for (i:1;pl) b<-b&n#(-p[i])^.1
 p<-p,1!.(~b)/!n
}
```

rprime 300



What this function does is that it first stores the primes up to 100 in p , and then it checks the size of the parameter $n$. If $n$ is less than 100 , then just select primes from $p$; otherwise recursively calls rprime with the square root of $n$. Then take out multiples of primes found so far. This is a much more efficient function than our earlier PRIME function even though it is recursive. This function also illustrates how control structures improve program readability when there are alternate choices and irregular iteration, while ELI boolean array operations still support a succinct dataflow style coding.

Finally, we recall that we stated in sect. 2.3 that the each operator " operates on defined functions and lists.
For example,
rprime" (10; 100; 200)
$<2357$



\{add: $x+y$ \}
add
(3;4) add" (6 7 9;10 11)
<9 1012
<14 15

## 4. System Facilities

## 4.1 save and reload your work*

You can save your work by rename your workspace and then save

| )wsid NEW1 |
| :--- |
| ) save |

saved $2011-08-18 \quad 11.30 .26$

Once you saved your workspace, you can reload it at a later time
)load NEW1
A workspace you saved may contain errors or intentional stops, and this is indicated by the state indicator

> )SI

For example, if you finished writing a function FNT, and when executed it results in an error at line 3.
Then the result of the system command above is
FNT[3]
When you load such a workspace, you can resume the work you left and start debugging.
Unlike in APL, a saved workspace cannot be copied into an existing workspace with a command
) copy NEW1
To achieve the effect of a ) copy, i.e. replacing any variable or function in the existing workspace with the one copied in when there is a name collision, we use ) fcopy file1 to be explained later in this section. In particular, system variables such as [] IO would be refreshed by the one exists in the copied in file. Please note that ELI does not allow a variable to be replaced by a function with the same name, nor a function replaced by a variable of the same name from another workspace.

You can also output the functions and variables in a workspace, or some portion of it, to a file; but your workspace's suspensions, i.e. ) SI indicating unresolved bugs, will not be copied over.

```
)out file1
)out file2 FN1 FN2 A BC
```

In the second case, only those items listed after the file name file 2 would be sent to the output file. These so called eli script files have file extension *.esf while those denoting workspaces have extension *.eli. For the same group of variables and functions, an esf file is noticeably smaller than an eli file. An esf file, or a portion of it, can be copied in or loaded with the system commands
)fcopy file1
)fcopy file2 FN1 FN2 A BC
)fload file1
On Windows, after installing ELI, there would be a subdirectory eli created in your Program Files directory which likely resides in c disk; eli has two subdirectories, bin and ws. The ELI executable resides in bin. Saved workspaces, outed or edited files and esf script files all reside in ws directory, and one need to put a prepared (text) file into the ws directory before one can ) fload or ) fcopy it. On Linux/Mac OS, bin and ws are combined into one directory: elix/elim. To see all workspaces and script or text files that are there, you type ) lib
)lib
RPRIME.esf TSORT.esf standard718.esf standard.esf edb828.esf edb828.eli dbdata.txt dbdata.eli
edb.esf edb.eli test.eli
To see only those workspaces or files starting with specific characters, you type

```
)lib ed
edb828.esf edb828.eli edb.esf edb.eli
```


## 4.2 loading and copying script files

You don't need to input your functions in the edit mode of ELI nor is it convenient or practical to input large variables through an interactive ELI session. You can prepare as an ordinary text file, or what usually calls a script file, of extension *.esf. (extension *.txt also works if no .esf file of the same name exists). A script file can contain not only function definitions as in the RPRIME example we see in the last chapter but can also put values into variables. To do that you put

## \&A I 25080

\&

The first line is the variable name followed by a character denoting its type (B:boolean; I:integer; E:float; J:complex number; C:character; S: symbol, D: temporal data, L: list; we note here for an item v in ELI the monadic function type : v gives an integer assigned to that type from $0,1,2,4,3,7,6$ corresponding to the order above) and the rank and shape of that variable, then followed by the value of the variable in ravel order for all arrays. For a scalar, instead of rank and shape, one writes a 0 :

```
&a E 0
0.5...
&
```

However, the specification for a list is recursive since it is not a simple array or scalar, i.e. each item in the list needs to be specified one after another. For example, we have file $t s 2$.txt as follows

```
< L 1 3
I 2 2 3
123456
C 15
'abcde'
E 1 1
0.5
&
)fcopy ts2 //copy ts2.esf into ELI interpreter
 lt
123
456
abcde
0.5
```

For a function FN1 with two arguments $A, B$ and result $z$, it is written similar to what we type in function edit mode
@. Z<-A FN1 B;C
@.
If FN1 calls FN2, definition of FN2 must appear before FN1 if FN1 is in short form (*see below). To load in a file named S1, type (*note in version 0.3 S1 is assumed to be of type esf; for a txt file type s1.txt instead of S1)
)fload S1

You can even put an executable statement such as 'RPRIME 120 ' in a script file; that statement would then be executed at the time of loading (or copying) in the order of its appearance in the script file.

There is a similar command with respect to copy in a script file $S$
)fcopy $S$
It differs from ) fload in that it would not start from a CLEAR workspace. Existing functions and variables in the current workspace would remain unless there are functions and/or variables with the same names exist in S . In this case, they would be replaced by those from $s$. An esf file can also include other system commands such as ) load ..., )fload ..., )fcopy ....

ELI also provides a short-form function definition facility as follows
\{fnam: ...\}
where fnam is the name of the function to be defined and either $z$ or the last expression is the result of the function, while x is the right argument, and y is the left argument if present and all other variables are assumed to be local as well. All statements must be a simple or a if statement; two statements can be separated by ';' in one line. Statements in short-form definition cannot access any global variable other than system variables. Also comment line(s) must be outside of the function body \{..\}. Moreover, a short-form definition of a defined function can be entered in execution mode of ELI. For example

```
//average of a numeric vector
{avg: (+/x) %#x}
```

For a more interesting example, let x be an annual interest rate in percentage, y be the number of years of a loan, P the principal of a loan. Then
$\mathrm{J}=$ monthly interest rate $=\mathrm{x} /(12 * 100)$
$\mathrm{N}=$ number of months over the loan period $=\mathrm{y} * 12$
$\mathrm{M}=$ monthly mortgage payment $=\mathrm{P} * \mathrm{~J} /\left[1-(1+\mathrm{J})^{-\mathrm{N}}\right]$
//monthly payment for a loan of one dollar with annual interest rate of x\% over y years
\{mthpaym1: J\%1-(1+J<-x\%12*100)*.-y*12\}

Then for a loan of P amount, the monthly mortgage payment at interest rate of $\mathrm{x} \%$ over y years is

```
M<-P*y mthpaym1 x
```


## 4.3 input and output

### 4.3.1 standard output

We have already discussed input and output files with functions and variables. But in ELI, for simple output, we can do
[]<-'Hello World!'
Hello World!
and an appearance of [] not followed by an <- in code will wait for user input. '[)' is for bare-output, i.e. the next output will not start from a new line but follow immediately after the previous one. For example,

```
 {disp: [)<-'profit on ',(+.x),' is ';[]<-x*0.1}
```

disp
disp 100.01
profit on 100.01 is 10.001
10.001

There is an improvement on input facility in ELI version 0.3, as we explain in the two subsections below (or one can read the new release note posted at ELI site for details).

### 4.3.2 standard input

When an ELI program needs to ask a user to input, it can use '[]' to get the user input as a string.
[)<-'Please enter your name:'
Please enter your name:
[]<-'Welcome ',[]

Welcome hanfeng


The above code snippet can invoke a GUI window to ask user to input name. This is a new feature after ELI version 0.3 with ELI Studio. Currently, it only supports string input that is very similar with the raw_input in Python.

If you want to input a number other than a string, you can simply use the execute function (!.) to convert a string representing numerical data to a number.
$x<-!$. []
x
0.52 .3


### 4.3.3 file handle

We introduce a flexible construct called file handle in the ELI system to support writing data into files easily. A file handle saves the attribute for an opened file and manipulate the file directly. ELI offers the following two system functions with respect to a file handle.

| System function | Example | Description |
| :---: | :--- | :--- |
| [] open | $h<-[]$ open 'file.txt' | open the file file.txt and save the file handle to variable $h$ |
| [] close | [] close $h$ | close $h$, return 0 if $h$ is successfully closed, return 1 otherwise |

After a file is opened and its file handle is saved to the variable $h$, it is allowed to write data into the file through the file handle by the system function $\ll$.


| $\square$ file1.txt - Notepad |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| File | Edit | Format | View | Help |
| 3. | 141592654 |  |  |  |
| 1 | 2 | 3 | 4 | 5 |
| 6 | 7 | 8 | 9 | 10 |
|  |  |  |  |  |
| 11 | 12 | 13 | 14 | 15 |
|  |  |  |  |  |

A pi(@1) and a 3-by-5 numeric matrix are saved into the file 'file1.txt''. The syntax of writing a variable is like C++'s stream output (std: : out<<"text"). If a file is opened multiple times, there would be different file handles returned. It is suggested to explicitly close all file handles after all data has been completely written into the file. Otherwise, the designated file will be occupied until it is safely closed.

### 4.3.4 read a file

The system function, [] get, is used to read a raw text file as a whole. It is designed to read the content of a text file line by line and save its content as a list in ELI; each item of the list is a line from that file.

Suppose we read the file1.txt from sect. 4.3.3 which contains 4 string lines. After the file is saved into w with the system function [] get, the returned value $w$ is a list (type 6) of length 4; each element of $w$ is a character vector.

| w<-[]get 'file1.txt' w |
| :---: |
| $<3.141592654$ |
| <1 2345 |
| $<678910$ |
| <11 1213131415 |
| \#w //length |
| 4 |
| :w //list |
| 6 |

### 4.3.5 read a csv file

The system function, [ ] CSV, is used to load a csv file into a workspace as a table. It takes an argument with a list type which consists of at least two elements: csv file path and column types.
[] CSV <list-arguments>
(i.e. table <-[]CSV ('AAPL.csv';'DEEEEIE';'true';','))

The meaning of each component of <list-arguments> is explained as follows.

| Arguments | Description |
| :--- | :--- |
| File path | Specify the csv file, either full or relative path is acceptable |
| Column types | Specify the type of each column |
| Head row (optional) | Default: 'true' <br> Input with (true) / without (false) a head row |
| Delimiter (optional) | Default: ',' <br> It can be a comma (‘,') or any other character designated as a delimiter |

All arguments should be wrapped with a pair of single quotes. If a cell is empty, it will be automatically converted to a corresponding null value. A sample of a CSV file can be downloaded from the ELI homepage (http://fastarray.appspot.com/download.html).

### 4.3.6 table output

A table in ELI (see sect. 5.2) can be outputted to common data formats including CSV, XML, JSON and TXT.


The table contact above with three records has been saved into contact.csv by the system command []write. We can try three more commands to save the table into three different formats as follow:

```
 []write 'contact.xml'
contact.xml
 []write 'contact.json'
contact.json
 []write 'contact.txt'
contact.txt
```

A screenshot of the CSV file is:

| 1 | PersonID, LastName, Number |
| :--- | :--- |
| 2 | 17, Robert,101 |
| 3 | 5,Alice, 201 |
| 4 | 9, John, 301 |
| 5 |  |

A screenshot of the XML file is:

$$
\begin{aligned}
& \text { <eli> } \\
& \text { <row><PersonID>17</PersonID><LastName>Robert</LastName><Number>101</Number></row> } \\
& \text { <row><PersonID>5</PersonID><LastName>Alice</LastName><Number>201</Number></row> } \\
& \text { <row><PersonID>9</PersonID><LastName>John</LastName><Number>301</Number></row> } \\
& \text { </eli> }
\end{aligned}
$$

A screenshot of the JSON file is:

```
1 \"eli":[
2 {"PersonID":"17","LastName":"Robert", "Number":"101"},
3 {"PersonID":"5","LastName":"Alice","Number":"201"},
4 {"PersonID":"9","LastName":"John","Number":"301"}
]}
```

A screenshot of the TXT file:

| 1 | PersonID | LastName | Number |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 17 | Robert | 101 |  |
| 3 | 5 | Alice | 201 |  |
| 4 | 9 | John | 301 |  |
| 5 |  |  |  |  |

## 4.4 pre-defined functions in the standard script

ELI system provides a script standard.esf which contains many frequently used functions. Hence,
)fcopy standard
will copy in the script file, then a group of pre-defined functions are available. For example, they include

```
{avg: (+/x) %_1^.#x} //average of a numeric vector or row-wise average of a numeric array
{median: ((0.5*w[m]+w[m+1]),w[m<-_1+[]IO+~.0.5*#x])[[]IO+2|#w<-x[<x]]} //median of a numeric vector
{gmean: (*/x)*. %#x} //geometric mean of a numeric vector
{stddev: ((+/(x-avg x)*.2) %#,x)*.0.5} //standard deviation of a vector
{intersect: (y?x)/y} //y intersects }x\mathrm{ , those of }\textrm{y}\mathrm{ which are in }
{union: x,(~y?x)/y} //y union x
{less: (~y?x)/y} //elements in vector y which are not in x
{xor: 2|y+x} //exclusive or of boolean vectors y and x
{last: x[#x]} //last element of a vector
{triml: (&\x~=' ')/x} //trim leading blanks off a character vector
{trimr: $(&\r~=',')/r<-$x} //trim trailing blanks off a character vector
{trim: triml trimr x} //trim leading and trailing blanks
{diag: x*(!1^.#x).:=!_1^.#x} //get the diagonal matrix of matrix x
```

One can study the standard.esf file to see the functionalities of the pre-defined functions, or do a copy to bring in all pre-defined functions in the standard file and test them. For example,

```
)fcopy standard
 avg 35789
23.75
 median 3 5 78 9
7
```

For character strings, we have

```
 lower 'ABC'
abc
 upper 'abc'
ABC
```

The function call $s$ substr x takes a character string s , and produces a substring located at $\mathrm{x}[1]$ of length $\mathrm{x}[2]$

```
 'abcdefghijklmn' substr 5 6
```

efghij

To get up the diagonal, upper or lower triangle part of a matrix $m$, we do:

```
 m<-5 5#!25
```

    diag m
    10000
070000
001300
000190
000025
triu m
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{llll}0 & 7 & 8 & 9\end{array} 10$
00131415
$\begin{array}{llll}0 & 0 & 0 & 19\end{array} 20$
0000025
tril m
10000
$\begin{array}{lllll}6 & 7 & 0 & 0 & 0\end{array}$
11121300
$\begin{array}{llll}16 & 17 & 18 & 19\end{array} 0$
2122232425

To get a $n$ by $n$ identity matrix, we call $(n=5)$
eye 5
10000
01000
00100
00010
00001
The function det $m$ gives the determinant of matrix $m$

```
 m
3
011127
_5 6 8 10
9}
 det m
_1428
```

ELI has the random number generator ? . n which stochastically picks an integer from the interval !n. Often, we like to generate $n$ random numbers from $[0,1]$ for that we can call rand $n$ :
rand 5
0.1315380 .7556060 .4586510 .5327680 .21896
and randm $n$ gives an $n$ by $n$ matrix with entries from $[0,1]$
randm 5
0.0470450 .6788650 .6792970 .9346930 .383503
0.5194170 .8309660 .0345730 .0534620 .529701

```
0.67115 0.007699 0.383416 0.066843 0.417486
0.686773 0.588977 0.930437 0.846167 0.526929
0.091965 0.653919 0.416 0.701191 0.910321
```

We recall from sect.1.8, that the primitive function ${ }^{\wedge}$. when applies to a matrix right argument the left argument must contain a length along its first axis (resp. last axis) when we only care about the last axis (resp. first axis). standard.esf provides the function take (resp. takel) to do what we want more conveniently:

```
 m<-3 5#!15
 m
 14}2234%
 6
11 12 13 14 15
 2 take m
12
6}
1112
 _4 take m
 2
 7 8
12131415
 2 take1 m
12345
678910
 _4 take1 m
0 0 0 0 0
1 2 3 4 5
6}778891
11 12 13 1415
```

For two items A and B, to glue these two pieces along the first axis in a more flexible way, i.e. if they are of different lengths in their last dimension, we pad one with fill elements to make them conformable for catenation, requires a bit more work. But there is a pre-defined function cat in standard library to do just that:

```
 c1
AAAA
AAAA
 c2
BBBBB
BBBBB
BBBBB
 c1 cat c2
AAAA
AAAA
BBBBB
BBBBB
BBBBB
 c2 cat c1
BBBBB
BBBBB
BBBBB
AAAA
AAAA
 100 cat nm<-3 6#!18
100 0 0 0 0 0
 1
 7
13 1415161718
 nm cat 90+!7
 1
 7
1314151617 18 0
```

The function call y replic x replicates elements of x according to the non-negatives numbers in y :

```
 x<-1 8 8 9
 y<-1}1144%342
 y replic x
1 89999 3 3 3 2 2 7 7 7
```

The function y nwise_sum x gives y -wise sum of vector x while y movin_sum x gives y -moving sum of vector x , the function y nwise_avg x gives y -wise average of vector x , the function y nwise_min x gives y -wise minimum of vector x while y movin_min x gives y -moving a minimum of vector x . We have y nwise_max x and $y$ movin_max $x$ similarly defined for maximum:

```
 w
14764654 22 5 68 94 39 52
 3 nwise_sum w
136 176 122 81 95 167 201 185
 3 movin_sum w
14 90 136 176 122 81 95 167 201 185
 3 nwise_avg w
45.33333333 58.66666667 40.66666667 27 31.66666667 55.66666667 67 61.66666667
 3 movin_min w
14 14 14 46 22 5 5 5 39 39
 3 movin_max w
14 76 76 76 54 54 68 94 94 94
```

The function stddev is the standard deviation of a numeric vector, with $w$ as above, we have
stddev w
26.6608327

Studying the code in the script file standard.es $£$ (most functions are defined in short function form) helps one who is new to ELI to learn how to program in ELI through one-line code as well as using control structures. One can also discover other pre-defined functions not sampled here. We note that each of these functions has implicit requirement on its' input(s). For example, avg applies numeric vectors/matrices and median only applies to numeric vectors while lower, upper and substr only apply to character vectors. det clearly only takes only numeric matrix argument.

## 4.5 the pattern matching function like

There is a character string pattern matching function like provided by ELI (since version 0.3). We illustrate its usage by the following examples:

```
 a<-('rode';'road')
 a like 'ro%' //% means any number of characters
11
 a like '_o%' //_ means one wild card character
11
 a like 'ro[da][ed]' //[da] means 'd' or 'a'
11
 a like 'rod[ed]'
10
 a like '%e%' //query appearance of 'e'
10
 b<-('roder ';'road ')
 b like 'ro__[r] *' //x* means one or several character x
11
c<-('r18ode';'r76oad')
c like 'r[0-9][0-9]%' //[m-n] means a digit between m and n
11
```

```
 c like 'r[0-9][8-9]%'
10
 b like 'ro__r *' //.. 'r' followed by spaces
1 0
 b like 'ro_d *' //.. 'd' followed by spaces
0 1
```

The like function would be most useful in database queries involving character strings searches.

## 5. Dictionaries and Tables

## 5.1 dictionaries and enumerations

A dictionary $D$ is a two items list, a domain d and a range r of equal count, $(\mathrm{d} ; \mathrm{r})$, and a correspondence between them set up by the dyadic function map :, $D<-\mathrm{d}: r$. Once that a dictionary is set, a pair of system functions will return its components: key ( $D$ ) gives $d$, the domain, and value ( $D$ ) the range of $D$. The domain d must be a simple list of unique elements such as a vector of symbols, characters or integers with no duplicates, the range $r$ is a list of the same count as that of $d$ whose items can be scalar, array or list of any type. Elements in d are called keys; for each key k in d the lookup function $\mathrm{D}[\mathrm{k}]$ yields the corresponding item in r , which can be a scalar, an array or a list, as the result. Note that we assume []IO=0 in this chapter and the next chapter. For example

```
 tD<-`nodeid `parent`lson `rson: 0 _1 1 2
 tD
nodeid| 0
parent| _1
lson | 1
rson | 2
 C<-'ABC':((`usd;1;'USA'); (`pound;0.66;'Britain');(`yuan;6.27;'China'))
 M<-1 10 20:('Washington';'Hamilton';'Jackson')
 M
1 | Washington
10| Hamilton
20| Jackson
 key(tD)
`nodeid `parent`lson `rson
 value(tD)
_1012
 key(C)
ABC
 value(C)
<<'usd
 <1
 <USA
<<'pound
 <0.66
 <Britain
<<'yuan
 <6.27
 <China
 value(M)
<Washington
<Hamilton
<Jackson
 tD[`nodeid]
0
 C['A']
<'usd
<1
<'USA'
 C['AC']
<<'usd
 <1
 <'USA'
<<'yuan
 <6.27
 <'China'
 M[10]
```

Hamilton
Hence, the data structure dictionary is a generalization of list: instead of indexing by positions in $0 \ldots \mathrm{n}$, they are indexed by keys in their domains. Moreover, for a $k$ not in $k e y(D), ~ D[k]$ results in an unknown represented by ` 0 N , not an error.

M[100]
` 0 N
As in the case of a list, for a key k in a dictionary $\mathrm{D}, \mathrm{D}[\mathrm{k}]$ can be indexed assigned, i.e. its corresponding value can be updated if $k$ is in $k e y(D)$, or inserted if $k$ is not in key (D) to start with
tD['rson]<-4

As an array can be indexed by a subset of positions to get a sub-array, a dictionary can be indexed by a subset of its domain to get a sub-dictionary with corresponding sub-range: C [ ' $\mathrm{BC} C^{\prime}$ ] is the dictionary

```
'BC':((`pound;0.66;'Britain');(`yuan;6.67;'China'))
```

However, when that subset is a singleton $s$ we need to enlist it to get a sub-dictionary with count 1 for both its domain and range

```
C1<-C[<.'A'] is the same as C1<-(<.'A'):<(`usd;1;'USA')
```

Since dictionary is a generalization of list that instead of a map from an integer interval n n to L it is a map from a general discrete set, the shape \#d of a dictionary d is defined as \#key (d) or \#value (d).

Two dictionaries D 1 and D 2 can be joined by the catenate function ',': $\mathrm{D} 1, \mathrm{D} 2 . \mathrm{key}(\mathrm{D} 1, \mathrm{D} 2)$ is the union of key (D1) and key (D2) which must be of the same type. If $k$ is in the domain of one dictionary only then the corresponding value of $k$ in $D 1, D 2$ is the corresponding value of $k$ in that dictionary. If $k$ is in both domains, then the corresponding value of $k$ in $D 1, D 2$ is that of $D 2$, the right operand of the join:

```
d1<-`a `b `c:(1;2;3)
d2<-`e `d `f:(100;200;300
d1,d2
d| 200
 d2<-`e `d `c:(100;200;300)
 d1,d2
c| 300
```

a| 1
b| 2
c| 3
e| 100
f| 300
a| 1
b| 2
el 100
d| 200

If the ranges of dictionaries D1 and D2 are numeric and are conformable, then each of $f, D 1 f^{\prime \prime} D 2$, is defined for a primitive dyadic arithmetic, logical or relational function $f$ just as that for lists with elements belong to the common range of D1 and D2, and this is the same if one of Di is a numeric scalar. For a primitive monadic function $g$, $g^{\prime \prime D}$ D is similarly defined; by convention, we usually drop " from $f^{\prime \prime}$ for dictionaries.

```
 tD1<-`nodeid `parent`lson `rson: 1 0 3 4
 tD+tD1
nodeid| 1
parent| _1
lson | 4
rson | 6
 tD1+10
```

nodeid| 11
parent| 10
lson | 13
rson | 14
We can drop keys ks and their corresponding values from a dictionary D, ks!.D. For example, 'parent`1 son!. T results in a new dictionary (this feature is missing at present) ‘nodeid`rson: 02
If some element $k 0$ in $k s$ is not in key (D), it would have no effect to the result.
A dictionary D whose domain key ( $D$ ) consists of symbols and whose range value ( $D$ ) is a list whose elements are equal length vectors (some of them can be a scalar or a character matrix with the number of rows matches that length) is called a column dictionary. Suppose $k$ is a key, then $D[k]$ is a vector, and we can index it by i to get its i-th element, $D[k][i]$, or as in a matrix $D[k ; i]$ (later we also access this element by D.k[i]). An example of column dictionary is the following:

```
 tDc<-`nodeid `parent`lson `rson:val<-0 _1 1 2+"<.!5
 tDc
nodeid| 0 1 2 3 4
parent| _1 0 1 2 3
lson | 1 2 3 4 5
rson | 2 3456
```

There is an incarnation of the map function : when the left operand is the name (symbol denoting a name) of a variable $u$ whose value is a vector of unique items of symbol type and the right operand $v$ is a scalar or vector of symbols all belong to the set represented by $u$ which results in an enumeration instead of a dictionary

```
env<-`u:v
```

(recall that for a mapping pair lop:rop to be a dictionary lop must be a vector or a list while ` $u$ here is a scalar). With a fixed $u$, the (monadic) function ${ }^{\prime} u$ : is called an enumeration by $u$, $u$ is the domain of enumeration and $\mathrm{u}: \mathrm{v}$ is called the enumerated value over u (we assume [] IO $=0$ in this section).

```
 u<-`ibm `hp `appl
 v<-`ibm `ibm `appl `hp `ibm `hp `appl `hp `ibm `appl `hp `ibm `appl `hp `ibm `ibm
 ev<-`u:v
 ev
`u:`ibm `ibm `appl `hp `ibm `hp `appl `hp `ibm `appl `hp `ibm `appl `hp `ibm `ibm
 v[2]
`appl
 ev[2]
`u:`appl
```

The reason to have enumeration instead of just to store the variable $v$ (the range of $u: v$ ) is that to operate on each item of $v$ we need to check each symbol in v globally; with `u: we only need to check each item in v against those in $u$. For an enumerated variable, its value is actually stored as an index vector of its elements in $u$

0021012102102100
When we change an item in v , the corresponding item in ev will be changed as well. The index of and where functions on an enumeration ev are defined by their application to range v of ev :

```
 v[2]<-`hp
 ev[2]
`u:`hp
 v!`hp
2
 ev!`hp
2
```

```
 ?v=`ibm
0481112
 ?ev=`ibm
0481112
```

Updating the domain $u$ of an enumeration ev (such as change some base symbol in $u$ ) will automatically force corresponding changes in v :

```
 u[1]<-`ge
 ev
`u: `ibm `ibm `appl `ge `ibm `ge `appl `ge `ibm `appl `ge `ibm `appl `ge `ibm `ibm
 v
`ibm `ibm `appl `hp `ibm `hp `appl ` hp `ibm `appl ` hp `ibm `appl `hp `ibm `ibm
```

Without enumeration, to affect the same change in v we would need to do

```
 v[?v=`hp]<-`ge
 v
`ibm `ibm `appl `ge `ibm `ge `appl `ge `ibm `appl `ge `ibm `appl `ge `ibm `ibm
```

On the other hand, to append an enumeration requires a bit more work than just appending an item to v .

```
 v<-v,`gm
 v
`ibm `ibm `appl `ge `ibm `ge `appl `ge `ibm `appl `ge `ibm `appl `ge `ibm `ibm `gm
 ev<-ev,'gm
type error
```

What happened is that ${ }^{`} g m$ is not a member of symbols in $u$; so we need to do
$u<-u$, 'gm
ev<-ev,'gm
ev
`u:`ibm `ibm `appl `ge `ibm `ge ‘appl `ge `ibm `appl `ge `ibm `appl `ge `ibm `ibm `gm To recover v from its enumerated value, simply apply the value function as in the case of dictionary value ev  Finally we note that enumeration ` $u$ :v still works as above if $u$ is relaxed to be a variable of distinct values of a types different from the symbol type.

## 5.2 tables

The transpose of a column dictionary D defined as ${ }^{`} \mathrm{k} 0{ }^{`} \mathrm{k} 1 . . .{ }^{`} \mathrm{kn}$ : ( $\mathrm{v} 0 ; \mathrm{v} 1 ; \ldots ; \mathrm{vn}$ ) is called a table $\mathrm{T}<-\varepsilon . \mathrm{D}$, under the hook $T$ is still stored as $D$ with a mark for output purpose. We can also set up a table directly by

$$
T<-([] k 0<-v 0 ; k 1<-v 2 ; . . . ; k n<-v n)
$$

where $\mathrm{k} 0, \mathrm{k} 1, \ldots, \mathrm{kn}$ are symbols and $\mathrm{v} 0, \mathrm{v} 1, \ldots, \mathrm{vn}$ are vectors (some of them can be a scalar); the value columns $\mathrm{v} 0, \mathrm{v} 1, \ldots, \mathrm{vn}$ can be stored in variables $\mathrm{c} 1, \mathrm{c} 1, \ldots, \mathrm{cn}$ first. Then we can define T as

$$
\mathrm{T}<-([] \mathrm{c} 0 ; \mathrm{c} 1 ; \ldots \mathrm{cn})
$$

ki is simply the symbol of the variable name of $c i, i=0,1, \ldots, n$. Let $D$ be the dictionary

```
 D<-`ticker `price:(`ibm `hp `appl;207.2 16.8 457.01)
 D
ticker| ibm hp appl
price | 207.2 16.8 457.01
```

|  | \&.D |
| :--- | :--- |
| ticker | price |
| ---------- |  |
| ibm | 207.2 |
| hp | 16.8 |
| appl | 457.01 |

and T the transpose of D , then T can also be defined as a table directly as follows:

```
 T<-([] ticker<-`ibm `hp `appl; price<-207.2 16.8 457.01)
```

    T
    ticker price
--------------
ibm 207.2
hp 16.8
appl 457.01

Note that with '(' followed immediately by '[ ' it signifies the definition of a table so ' [ ] ' is not the quad for output and T is not a mere list but a table. In case we have done

```
c0<-`ibm `hp `appl
c1<- 207.2 16.8457.01
```

first, we can define a table as follows

T0<-([] c0;c1)
T0
c0 c1
-----------
ibm 207.2
hp 16.8
appl 457.01
then the column variable names will be used as symbol names for columns.
Records in a table can be accessed like in a list, and column names can be used as indices in a 2-dimensional array; and their values can be updated:

```
 T[;`ticker]
`ibm `hp `appl
 T[2;]
ticker | `appl
price | 457.01
 T[2;`price]
457.01
 T[`price]
207.2 16.8 457.01
 T[`price]<-T[`price]+1 2 _3
 T
ticker price

ibm 208.2
hp 18.8
appl 454.01
```

We can also access column values of a table with dot notation commonly used in database systems; and access rows of table as a vector of records forming a table or a dictionary in case of a single row:
T.ticker
`ibm ‘hp `appl
T[2]

```
price | 457.01
 T[0 1]
ticker price

ibm 207.2
hp 16.8
```

Two tables with similar columns can be joined together by the cantenate primitive ',':

```
 T2<-&.`ticker `price:(`ibm `hp;198.8 20.1)
 T2
ticker price
ibm 198.8
hp 20.1
 T,T2
ticker price

hp 16.8
appl 457.01
ibm 198.8
hp 20.1
```

In particular, we can append a record to a table:
`ticker `price: (`appl;468.3) ticker| appl price | 468.3 T,\&. 'ticker `price: (`appl;468.3)
ticker price

```
ibm 207.2
hp 16.8
appl 457.01
appl 468.3
```

When at least one column is a vector, a column which is a scalar will be extended to match the lengths of others
T1<-([] c0;c2<-2013;c1)
T1
c0 c2 c1
ibm 2013207.2
hp 201316.8
appl 2013457.01

We also note that a character matrix can be used as a vector of rows in defining a column as long as the length of its first axis is the same as that of the other columns in the table:

```
 compnam<-3 8#'Int BusMH P CompApple '
 T1<-([] ticker<-`ibm `hp `appl;price<-207.2 16.8 457.01;name<-compnam)
 T1
ticker price name
ibm 207.2 Int BusM
hp 16.8 H P Comp
appl 457.01 Apple
```

To retrieve column names of a table, ELI provides the function cols
cols T1

```
`ticker `price `name
```

The shape of a table $\mathrm{T}, \# \mathrm{~T}$, is defined to be the number of records in T
\#T
3
We note that the transpose of a table results back into a column dictionary, i.e. \&.T is D.

## 5.3 primary keys and keyed tables

In database systems, one typically designates a column, or a group of columns, in a table T to be the primary $\boldsymbol{k e y}$ of that table which usually uniquely identifies the records in that table T . That is, we have a smaller table Tk composed of the primary key column(s), and Tv , the table defined to be the rest of columns in T . Then a keyed table T is defined as a mapping between these two tables:

```
 Tk<-&.(<.`eqx):<.101 103 110
 Tv<-&.`ticker `price:(`ibm `hp `appl; 207.2 16.8 457.01)
 kT<-Tk:Tv
 kT
eqx	ticker price
101| ibm 207.2
103| hp 16.8
110| appl 457.01
```

For now we assume that the primary key is a single column. In the first line above, it is necessary to enclose the single items both in the domain and value of Tk to create a dictionary. To enter a keyed table directly as a table we do the following to achieve the same effect

```
kT<-([eqx<-101 103 110] ticker<-`ibm `hp `appl; price<-207.2 16.8 457.01)
```

To access a record in the keyed table kT we provide indexing by a value from the table of keys, i.e. value from key column(s):
kT[103]
ticker। hp
price | 16.8
To retrieve multiple records, it is a bit more elaborate as we can't simply do
kT[101 110]
length error
We need to enclose each index as $\mathrm{kT}[(<.101),<.110]$ or more conveniently
$\mathrm{kT}[(101 ; 110)]$
ticker price

```
ibm 207.2
```

appl 457.01

Keyed table can also be updated as tables but the indices are from items of its primary key table:

```
 kT[(101;110);`price]
ibm 207.2
appl 457.01
 kT[(101;110);`price]<-kT[(101;110);`price]*1.03
 kT
eqx| ticker price
```

| $---\mid---------------$ |  |
| :--- | :--- |
| $101 \mid$ | ibm |
| $103 \mid \mathrm{hp}$ | 213.416 |
| 110.8 |  |
| 10 appl | 470.7203 |

We also note that positional indexing for non-keyed table such as $\mathrm{kT}[1]$ no longer works here unless 1 happens to be a key column value. Since a keyed table is a dictionary like mapping, the functions key and value apply to it:
key kT
eqx
---
101
103
110
value kT //kT before update
ticker price
-------------
ibm 207.2
hp 16.8
appl 457.01

If we already have an ordinary table which has a column of unique values, the function xkey with the table as the right argument and the intended key column name as the left argument converts it into a keyed table (note: if [ ] is missing, it would result in a list, not a table):

```
 T0<-([] eqx<-101 103 110; ticker<-`ibm `hp `appl; price<-207.2 16.8 457.01)
```

    T0
    eqx ticker price
------------------
101 ibm 207.2
103 hp 16.8
110 appl 457.01
`eqx xkey T0


| eqx | ticker price |
| :-- | :-- |
| 101 | ibm 207.2 |
| 103 | hp 16.8 |
| 110 | appl 457.01 |

And a keyed table can be converted to an ordinary table by supplying an empty left argument to xkey:
() xkey kT
eqx ticker price
-----------------

101 ibm 207.2
103 hp 16.8
110 appl 457.01
All these operations will leave the original table unchanged.
In a situation when only a combination of several columns can uniquely determine a record in given a table $T, T$ is said to have a compound primary key, i.e. a primary key consists of several columns. Since a keyed table is a mapping between two tables, this just makes the domain table to have more than one column:
k2T<-([eqx<-101 101110 ;city<-`ny `ln `ny] ticker<-`ibm `bp `appl; price<-207.2 16.8 457.01)
k2T

| 101 ny | \| ibm | 207.2 |
| :---: | :---: | :---: |
| 101 ln | bp | 16.8 |
| 110 ny | \| appl | 457.01 |

To retrieve record(s) from $k 2 T$, we do
k2T[<. (101;'ny)]
ticker| ibm
price | 207.2
k2T[((101;'ny);(101;`ln))]
ticker price
------------
ibm 207.2
bp 16.8

Notice that in forming list items for retrieving record(s) the order of values must be in the same order as the order of key columns in the definition of the compound keyed table. Given record(s) in the value portion of a keyed table, we can also do reverse lookup of their indices in the key column(s).
kT! (<.(`ibm; 207.2)), <. (`appl;457.01)
eqx
---
101
110

To get the column name(s) of a keyed table, we apply the keys function
keys kT
`eqx
keys k2T
‘eqx ‘city

## 5.4 foreign keys and virtual columns

The construct of an enumeration ` u : of a variable u of unique symbols over a variable v with values belong to u at the end of sect.5.1 can be extended to that of a table pT with a primary key column p as domain and entries in a column of another table T , whose values all belong to that of p , as its range; this is denoted as ${ }^{\circ} \mathrm{pT}$. Therefore, we define a foreign key column in a table as an enumerated value over a keyed table.

```
 pT<-([cux<-1 1 3 5 8 8] sex<-'fmmf';age<-35 18 51 45)
 pT
cux| sex age
---|
| f 35
| m 18
| m 51
| f 45
 sales<-([] mech<-`p1 `p2 `p3 `p4 `p5 `p2;amt<-2.3 1.2 5 20.1 50.7 11;cust<-`pT:3 5 1 5 8 3)
 sales
mech amt cust
p1 2.3 3
p2 1.2 5
p3 5 1
p4 20.1 5
p5 50.74
p2 11 5
```

A foreign key establishes a relation between the enumeration domain table $k t$ and the enumerated value table $d t$. Consequently, if $d t$ has a column $f k<-` k t$ :... then the values of a column $c 0$ in $k t$ can be accessed via $f k$ with the dot notation $\mathrm{dt} . \mathrm{fk} . \mathrm{c} 0$ from dt , and this is called a virtual column.

```
 sales.cust.age
1851 35 51 45 18
```

There is a function meta which gives the meta data of a table indicating the types of a column (sect.4.2) and which column is a foreign key.
meta pT
c $\quad \mathrm{t} f \mathrm{a}$
---|------
cux | I
sex| C
age| I
meta sales


| c | tfa |
| :-- | :-- |
| mech | S |
| amt | E |
| cust | I pT |

At times one would like to get actual values instead of the enumerated values, to do that simply apply the value function

```
 sales.cust
`pT:3 5 1 5 8 3
 value sales.cust
3515 8 3
```

A built-in function fkeys when applying to a table returns a dictionary whose domain is the set of foreign keys of the table and whose value consists of the primary key table names:
fkeys sales
cust| pT
As in an ordinary vector $v$, the index of function $v$ ! a gives the position of $a$ in $v$, for a table $t$ and a record $b$, the reverse lookup function $t!b$ gives the position(s) of record(s) b in table $t$.
kTe<-([]eqx<-101 103110102 108; ticker<-`ibm `hp `appl `ge `gm; price<-207.2 16.8457 .12311 .2$)$
kTe
eqx ticker price
-----------------
101 ibm 207.2
$103 \mathrm{hp} \quad 16.8$

110 appl 457.1
102 ge 23
$108 \mathrm{gm} \quad 11.2$
kTe! (110; ‘appl;457.1)
2
kTe! ((108; 'gm;11.2) ; (110; 'appl;457.1))
42

## 6. Queries: esql

## 6.1 create, load and insert statements

ELI provides a small set of query statements called esql, each of which looks very much like a standard SQL statement in a traditional relational database management system. Its functionality covers the basics of $q$-sql in the kdb programming-database system (see $w w w . k x . c o m$ ) but it does not have the completeness of $q$-sql at present. Hence, while not every SQL statement has a ready counterpart in esql, some esql statements can be more powerful than their corresponding SQL statements.

One prepares an esql statement as a text string, and then executes that string by applying the reserved function do to it (one should check the standard.esf file from ELI distribution in the ws subdirectory):
do txt
The create statement is of the following form:
CREATE TABLE tbl (fields;types;width)
where $t b l$ is the name of the empty table to be created, fields is a list of column names separate by blanks, types is a character string indicating the types of column values (I for integer, C for character, S for symbols and D for date-time) and width is a vector of integers indicating the width of character valued columns and may be empty if there is no column of character type while the number of columns and that of types must be equal. Note that the corresponding order is maintained between these three parameters.
do stm10c<-'CREATE TABLE t1 (a b c de f;''SICEIC''; 8 1)'

```
table t1 created.
```

    t1
    a bcdef
-----------

The load statement is of the following form:

```
LOAD TABLE tbl (fld1s<-val1;...; fldn<-valn)
```

where tbl is the name of the table to be loaded, $f l d_{i}$ is the $i$-th column name and $v a l_{i}$ is the $i$-th column value, $i=1$..n.
w1

```
`r `r1 'r2 `s1 `s1
```

    w2
    3090100114210
do 'LOAD TABLE T1 ( $a<-w 1 ; b<-w 2$ )'
table T1 loaded.
T1
a b
------
r 30
r1 90
r2 100
s1 114
s1 210

The insert statement is of the following form:
INSERT INTO tbl ( $\mathrm{val}_{1} ; \ldots ; \mathrm{val}_{\mathrm{n}}$ )
where tbl is the name of the target table of insert, val $l_{\mathrm{i}}$ is the value, $i=1 . . n$, to be inserted to the $i$-th column of tbl. Of course, each $\mathrm{val}_{\mathrm{i}}$ must be compatible with the existing values in that column, i.e. of the same type and in case of character type, of the same width; val $\mathrm{v}_{\mathrm{i}}$ can be all scalars (with character columns being vectors), or vectors of the same length (with character columns being matrices having the length of the first dimension equals to the length of other vectors). For example,

```
 do 'INSERT INTO T1 ('r1 `s2 `s3;50 64 88)'
new value inserted into table T1.
 T1
a b

r 30
r190
r2 100
s1 }11
s1 210
r150
s264
s3 88
```

We note that this statement inserted 3 records into table $\mathrm{T1}$. Also, we can set/load a table as we did in the previous chapter without using create or load statement of esql.

## 6.2 select, exec and update* statements

The select statement is one of the most used queries in any database system and it is of the following form:

```
SELECT [fields] [BY group] FROM tbl [WHERE wherespe]
```

where each expression inside $[\ldots]$ is optional, $t b l$ is the name of the table we are selecting data from; fields selects the columns of $t b l$ while wherespe selects which rows of records in table $t b l$ are to be included in the final result. The where clause is processed first, if it is absent then all rows of $t b l$ are selected; similarly, if fields is empty then all columns are selected corresponding to the statement

```
SELECT * FROM tbl ...
```

in SQL. wherespe is of the following form:

$$
\text { constraint [,constraint } \left.\left[\text { [, constraint }{ }_{2}, . .\right]\right]
$$

i.e. it is one or several constraints separated by a ','; each constraint is of the form
lop cfn rop
where either lop or rop is a column name while the other then must be a literal constant, cfn is one of the comparison functions such as ' $=$ ' or ' $<$ ' in ELI; or 'IN' (stands for the membership function '?' in ELI) or 'LIKE' (stands for the pattern matching function like in sect.4.5 ). The presence of multiple constraints means a nested where, i.e. all constraints are and together.
fields is of the form:
columnexp [, columnexp $[$, columnexp 2, . ] ]
i.e. it is one or several columnexps separated by a ','; each columnexp is of the form
[newnam <-[agrfn]] colnam
where colnam is the name of the source column in tbl, which can possibly be a virtual column if tbl has a foreign key, and newnam is the name giving to the resulting column in the output table; agrfn is the name of an aggregate function, in case the by group clause is present. The possible aggregate function names are: SUM,

COUNT, MAX, MIN, FIRST with the usual meanings of the indicated function applying to each group yielding a scalar value.

The meaning of by group clause is similar to that of GROUP BY in SQL, it groups records by their value specified in group which is of the form:
[newnam <-] colnam
where colnam is the source column whose value is used to group records and newnam is the name of the resulting column. We give several examples of the select statement here:
do 'SELECT FROM T1 WHERE $b<100$, a IN 'r 'r1 's2'
a b
-----
r 30
r1 90
r1 50
s2 64
SELECT successful.

T
n p
----
$\times 0$
y 15
$\times 12$
z 20
25
y 14
do 'SELECT m<-MAX p,s<-SUM p BY name<-n FROM T'


| name | m s |
| :-- | :-- |
| \begin{tabular}{l | ll} |

x \& 1212
\end{tabular}

y | 1529
z | 2545
SELECT successful.
The exec statement is of the same format as that of the select statement. Instead of returning a table as in the case of the select statement, the exec statement returns a dictionary corresponding to the table for the alike select statement; and in case of a one-dimensional table, it just returns the column values.

```
EXEC [fields] [BY group] FROM tbl [WHERE wherespe]
```

For example,

```
 do 'EXEC n FROM T'
`x `y 'x `z `z `y
EXEC successful.
 do 'EXEC n,p FROM T'
n| x y x z z y
p| 0 15 12 20 25 14
EXEC successful.
```

Using the exec statement offers the advantage of directly utilizing a returned value into an ELI program for further processing. This is in sharp contrast to the situation in ordinary database systems where one need to fetch data from a RDMS selected by a group of SQL statements to be further processed by another programming language such as Perl or Python. More than conceptual simplicity in programming, this integration greatly improves processing efficiency.

The update statement* is of the same format as that of the select statement (*at present it is not well implemented) but with fields being replaced by updfields which is a group of one or several updf
separated by ',' and each updf is of the form colnam<-expr where colnam is the name of a source column whose value is going to be replaced by expr:

```
UPDATE [updfields] [BY group] FROM tbl [WHERE wherespe]
```

Finally, remember for all select, exec and update statements, by comes before from and where comes after from.

## 6.3 query examples against two databases

We shall illustrate the use of esql by running query examples against a sample database of a store and a trade. Assume we have already had standand.esf file in ws; then after issuing ) fload store2 (which is included in the ws directory of eli distribution) to bring in the data, we see the following lines to build a database of four tables directly (set [] IO = 0):

```
 tc<-^.#na
 ts<-^.#mn
 te<-^.#en
 customer<-([cux<-!tc] name<-na;sex<-se;age<-ag;addr<-ad;cardn<-cn)
 stock<-([stx<-!ts] m_name<-mn;in_stk<-in;uni_prc<-up)
 employee<-([empx<-!te] e_name<-en;e_age<-ea;e_phone<-ep)
 sales<-([salx<-sa]cust<-`customer:cu;stk<-`stock:it;amount<-am;payment<-py;
dat_time<-dt;empl<-`employee:sp)
```

One can type
do 'SELECT FROM sales'
to see the content of the table sales or any other tables similarly. sales is the main table with salx as its primary key and cust, stk, empl are foreign keys pointing to tables customer, stock, employee respectively. m_name is the name of a merchandize in the store and in_stk whether it is in stock. We see here several esql statements and their resulting tables; the meaning of each table is self-explanatory as it is the same as that in a corresponding standard SQL statement.

```
 do 'SELECT dat_time FROM sales WHERE 25 > cust.age'
dat_time
2012.05 25T09.50.21.000
2012.05.25T10:37:03.000
2012.05.25T11:56:45.000
2012.05.25T12:00:22.000
2012.05.25T13:17:04.000
2012.05.25T13:23:41.000
2012.05.25T15:30:05.000
 do 'SELECT yng_sal<-amount, dat_time FROM sales WHERE 25 > cust.age'
yng_sal dat_time

45 2012.05.25T10:37:03.000
23.5 2012.05.25T11:56:45.000
28.5 2012.05.25T12:00:22.000
51.2 2012.05.25T13:17:04.000
23.1 2012.05.25T13:23:41.000
26.5 2012.05.25T15:30:05.000
```

do 'SELECT amount, dat_time FROM sales WHERE 50>amount, stk.m_name IN 'hammer'screw'tape'
amount dat_time

| 36.5 | $2012.05 .25 \mathrm{~T} 10: 13: 42.000$ |
| :--- | :--- |
| 28.5 | $2012.05 .25 \mathrm{~T} 12: 00: 22.000$ |
| 18.5 | $2012.05 .25 \mathrm{~T} 13: 43: 25.000$ |

```
30.2 2012.05.26T12:43:46.000
23.1 2012.05.25T13:23:41.000
39 2012.05.25T14:10:23.000
26.5 2012.05.25T15:30:05.000
48.2 2012.05.26T14:30:26.000
17.5 2012.05.25T15:33:42.000
 do 'SELECT FROM sales WHERE 50 < amount,cust.sex=''f'''
salx cust stk amount payment dat_time empl
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 4 & 1 & 2 & 68.2 & cr & 2012.05.25T11:30:24.000 & 1 \\
\hline 7 & 3 & 1 & 92.5 & cr & 2012.05.26T16:10:27.000 & 0 \\
\hline 8 & 3 & 2 & 62.4 & cr & 2012.05.26T17:23:48.000 & 0 \\
\hline 11 & 3 & 0 & 57 & cr & 2012.05.25T12:23:43.000 & 2 \\
\hline 20 & 3 & 3 & 74.2 & cr & 2012.05.25T15:03:44.000 & 2 \\
\hline 23 & 5 & 4 & 82.5 & cr & 2012.05.26T19:43:47.000 & 3 \\
\hline 24 & 5 & 5 & 61.4 & cr & 2012.05.26T20:57:08.000 & 3 \\
\hline 27 & 5 & 3 & 61 & cr & 2012.05.25T15:57:03.000 & 5 \\
\hline 31 & 6 & 4 & 77.5 & cr & 2012.05.26T21:30:27.000 & 3 \\
\hline
\end{tabular}
 do 'SELECT gender<-FIRST cust.sex, total<-SUM amount BY purchase<-cust.cux FROM sales'
purchase| gender total
\begin{tabular}{|c|c|c|}
\hline 0 & | m & 30.6 \\
\hline 1 & 1 f & 138.3 \\
\hline 2 & | m & 174.3 \\
\hline 3 & \| f & 398.4 \\
\hline 4 & | m & 296.8 \\
\hline 5 & 1 f & 253.1 \\
\hline 6 & | f & 150.1 \\
\hline
\end{tabular}
\#cnam<-do txt3txt3<-'EXEC name FROM customer'
7
cnam
<Pan, John
<Watson, Ik
<Brown, Eva
<Pole, Greg
<Ulam, John
<Wood, Jack
<Smith, Ed
do txt31<-'SELECT name FROM customer WHERE name LIKE ''\%J[ao]\%'''
name

Pan, John
Ulam, John
Wood, Jack
```

We note that in ELI version 0.3 the line SELECT successful is no longer there after completion of a select or exec statement. There is another file aapl.esf included in the ws directory of eli distribution which is from historical data of daily trading of the Apple company's stock (but with the dates shifted and being contiguous). The date column is designated to be the primary key. The meaning of the other columns is self-explanatory.

```
)fload aapl
[]IO <- 0
trade<-([date<-dates] open<-open0; close<-close0; high<-high0; low<-low0; vol<-volume0)
cols trade
date 'open 'close 'high 'low 'vol
 do txt0<-'SELECT date,open, close, vol FROM trade WHERE close>130'
date open close vol
```

```
2004.01.30 127.25 131.75 }866880
2004.02.01 126.47 130.38 16359200
2004.02.03 135.5 133.31 11742400
2004.02.04 127.44 135.81 14457600
2004.02.06 139.38 135.94 8568800
2004.02.07 137.25 139.13 7253600
2004.02.08 137.63 139.56 9976800
2004.02.09 142.44 138.69 15962000
2004.02.10142 141.31 20098000
2004.02.11 132.78 144.19 20288800
2004.02.12 122.56 134.94 18729200
2004.02.26 118.56 130.31 38478000
 do txt1<-'SELECT date,open,close,vol FROM trade WHERE close<0.9*open'
date open close vol
2003.09.29 24.94 22.31 72795600
2004.04.03 106.12 95 27443200
2004.06.15 71.12 63.3140853200
2005.03.10 34.75 31.19 31012400
2005.09.28 21 18.6949946800
2012.07.22 44.5 40 17360000
2012.09.11 34.5 28 11200000
2012.09.15 38.5 34.5 20320000
2012.09.16 48.25 36.5 17000000
2014.07.10 24.62 22.12 26244000
```

do txt2<-'SELECT date, high,low, close, vol FROM trade WHERE high-low>close*0.15'
date high low close vol
2002.10 .1624 .2520 .9421 .9636791400
2005.08.21 $20 \quad 14.7518 .9464737600$
$2005.08 .2316 .2513 .5 \quad 16.25 \quad 25650800$
2005.09.28 $21.5 \quad 18.5 \quad 18.6949946800$
2012.09.08 $40 \quad 32.25 \quad 39.5 \quad 11840000$
2012.09.11 $35 \quad 27.6228 \quad 11200000$
2012.09.15 $42 \quad 32.63 \quad 34.5 \quad 20320000$
$2012.09 .1648 .25 \quad 35.5 \quad 36.5 \quad 17000000$
2013.09.24 32.25 26.8731 .254750400
do txt3<-'SELECT date, range<-high-low FROM trade WHERE high-low>close*0.15' date range
2002.10.16 3.31
2005.08 .215 .25
2005.08.23 2.75
2005.09.28 3
2012.09 .087 .75
2012.09.11 7.38
2012.09.15 9.37
2012.09.16 12.75
2013.09.24 5.38
do txt4<-'SELECT FROM trade WHERE high-low>close*0.15 OR close > $1.1 *$ open'
date open close high low vol
$2002.10 .16 \quad 23.94 \quad 21.96 \quad 24.25 \quad 20.94 \quad 36791400$
$2003.06 .1018 .5 \quad 20.44 \quad 20.5 \quad 18.44 \quad 17065400$
$2003.07 .11 \quad 19.56 \quad 21.69 \quad 21.75 \quad 19.56 \quad 30562800$
2003.07.22 $16.25 \quad 18 \quad 18.5 \quad 16.25 \quad 28707600$
$2003.07 .2814 .5 \quad 16.37 \quad 16.69 \quad 14.44 \quad 29181800$
$2003.12 .10 \quad 50.5 \quad 55.63 \quad 56.94 \quad 50.31 \quad 17500000$
$2004.01 .24109 .5 \quad 123.87123 .94109 .0614642400$
2004.02 .12122 .56134 .94136 .75121 .6218729200

| 2005.02 .10 | 31.75 | 35.13 | 35.25 | 30.75 | 23880000 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2005.08 .21 | 15.94 | 18.94 | 20 | 14.75 | 64737600 |
| 2005.08 .23 | 13.63 | 16.25 | 16.25 | 13.5 | 25650800 |
| 2005.09 .28 | 21 | 18.69 | 21.5 | 18.5 | 49946800 |
| 2005.10 .07 | 16 | 18.12 | 18.5 | 15.88 | 12273200 |
| 2005.12 .22 | 13.38 | 15.19 | 15.5 | 13.31 | 26252400 |
| 2006.07 .06 | 22 | 24.62 | 24.75 | 22 | 19269200 |
| 2007.11 .21 | 33.63 | 37.88 | 38.13 | 33.38 | 25366800 |
| 2012.09 .08 | 34.25 | 39.5 | 40 | 32.25 | 11840000 |
| 2012.09 .11 | 34.5 | 28 | 35 | 27.62 | 11200000 |
| 2012.09 .15 | 38.5 | 34.5 | 42 | 32.63 | 20320000 |
| 2012.09 .16 | 48.25 | 36.5 | 48.25 | 35.5 | 17000000 |
| 2013.09 .24 | 32 | 31.25 | 32.25 | 26.87 | 4750400 |

do txt4a<-'SELECT FROM trade WHERE high-low>close*0.15'
date open close high low vol

| 2002.10 .16 | 23.94 | 21.96 | 24.25 | 20.94 | 36791400 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2005.08 .21 | 15.94 | 18.94 | 20 | 14.75 | 64737600 |
| 2005.08 .23 | 13.63 | 16.25 | 16.25 | 13.5 | 25650800 |
| 2005.09 .28 | 21 | 18.69 | 21.5 | 18.5 | 49946800 |
| 2012.09 .08 | 34.25 | 39.5 | 40 | 32.25 | 11840000 |
| 2012.09 .11 | 34.5 | 28 | 35 | 27.62 | 11200000 |
| 2012.09 .15 | 38.5 | 34.5 | 42 | 32.63 | 20320000 |
| 2012.09 .16 | 48.25 | 36.5 | 48.25 | 35.5 | 17000000 |
| 2013.09 .24 | 32 | 31.25 | 32.25 | 26.87 | 4750400 |


| date | open |  | FROM high | $\begin{aligned} & \text { rade } \\ & \text { low } \end{aligned}$ | ol |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 03.06 | 18.5 | 20.44 | 20.5 | 18.44 | 17065400 |
| 03.07 | 19.56 | 21. | 21.75 | 19.56 | 30562800 |
| 2003.07. | 16.25 | 18 | 18.5 |  | 8707600 |
| 2003.07 .28 | 14.5 | 16.3 | 16.6 | 14.44 | 29181800 |
| 2003.12. | 50.5 | 55.63 | 56.94 | 50.31 | 17500000 |
| 2004.01 | 109.5 | 123.8 | 123.9 | 109.06 | 14642400 |
| 2004.02.12 | 122.56 | 134.9 | 136.75 | 121.62 | 18729200 |
| 2005.02. | 31.75 | 35.13 | 35.2 | 30.75 | 23880000 |
| 2005.08. | 15.94 | 18.94 | 20 | 14.75 | 64737600 |
| 005.08 | 13.63 | 16.25 | 16. | 13.5 | 25650800 |
| 005.10.0 | 16 | 18.12 | 18.5 | 15.88 | 12273200 |
| 2005.12.22 | 13.38 | 15.19 | 15.5 | 13.31 | 26252400 |
| 2006.07.06 | 22 | 24.62 | 24.75 | 22 | 19269200 |
| 2007.11. | 33.63 | 37.88 | 38.13 | 33.38 | 25366800 |
| 2012.09.08 | 34.25 | 39.5 | 40 | 32.25 | 11 |

do txt5<-'SELECT FROM trade WHERE high-low>close*0.15, close > $1.1 *$ open'
date open close high low vol

```
2005.08.21 15.94 18.94 20 14.75 64737600
2005.08.23 13.63 16.25 16.25 13.5 25650800
2012.09.08 34.25 39.5 40 32.25 11840000
 #trade
5 4 2 9
)time do txt4 //doing OR in WHERE claus
6ms
)time do txt5 //doing AND in WHERE claus
3ms
```

We see in txt3 that an arithmetic operation on two fields can be assigned a new field name. And that two where-constraints can be ORed together or and together when separated by a ','. We also notice that the table trade has 5429 records and it takes 6 ms and 3 ms to execute the queries txt 4 and txt5 respectively.

## References

[1] International Organization for Standardization, ISO Draft Standard APL, APL Quote Quad, vol. 4, no.2, December, 1983.
[2] W.-M. Ching, The Design and Implementation of an APL dialect, ELI, APL 2000Berlin Conf., Berlin, 2000.
[3] B. Kernighan and D. Ritchie, The C Programming Language, $2^{\text {nd }}$ ed., Prentice Hall, 1988.
[4] N. Wirth, Algorithms + Data Structures $=$ Programs, Prentice Hall, 1976.


[^0]:    t
    2013.06.20T19:00:16.478

